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Diagnostic testing for SARS-CoV-2 remains an important tool in the 
COVID-19 pandemic response by allowing for the timely detection 
and isolation of infectious cases, reducing the potential for further 
transmission. Antigen-detecting rapid diagnostic tests (Ag-RDTs) can 
be performed at the point of care, cost less than RT-PCR testing and 
provide quick results. There is therefore particular interest in the 
use of Ag-RDTs for the scale up of diagnostic testing in limited 
resource settings where RT-PCR testing capacity is constrained 
and to support COVID-19 surveillance or response efforts where 
RT-PCR testing is more readily accessible. 

Using this modelling framework and the use cases identified in 
Phase 1, we investigated the effectiveness of using Ag-RDTs for 
symptomatic testing, both with and without the combination of 
asymptomatic community testing, on onward disease transmission 
according to different Ag-RDT allocation strategies and availability 
in four social settings: households, schools, formal workplaces and 
churches.

In Phase 1 of our use case analysis, we identified a range of 
scenarios across various sectors of society where Ag-RDT screening 
for SARS-CoV-2 would be appropriate and the optimal testing 
strategies for these settings.

EXECUTIVE SUMMARY MODELLING CONSORTIUM  
PHASE 2 APPROACH 

THE ACT-ACCELERATOR RAPID ANTIGEN TESTING 
MODELLING CONSORTIUM IS WORKING TO IDENTIFY 
THE USE CASES IN WHICH AG-RDTS CAN BE BEST 

UTILIZED TO CREATE THE LARGEST REDUCTIONS IN 
ONWARD TRANSMISSION OF SARS-COV-2.

IN PHASE 2 OF OUR ANALYSIS, WE DEVELOPED AN 
AGENT-BASED MODELLING FRAMEWORK (PATAT) TO 

INVESTIGATE THE IMPACT OF TESTING WITH AG-
RDTS ON REDUCING SARS-COV-2 TRANSMISSION IN 
A LOW- AND MIDDLE-INCOME COUNTRY ARCHETYPE. 

Figure 1.	Schematic of the Propelling Action for Testing And Treatment (PATAT) simulation model
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Testing of symptomatic individuals yields greater benefits than all asymptomatic community testing strategies 
until the vast majority of symptomatic individuals who are likely to seek testing at healthcare facilities have been tested. 

Testing demand at healthcare facilities is likely to be largely shaped by non-SARS-CoV-2 infected individuals 
because of the overlap of SARS-CoV-2 infection symptoms with other respiratory tract infections. Hence, a very large number 
of tests are likely to be required to saturate demand.

The utility of testing for averting infections relies entirely on people changing their behaviour to reduce 
contacts following a positive test. Encouraging and incentivizing these changes of behaviour are essential for the 
effectiveness of testing.

Testing has the potential to be most effective at reducing transmission when R0 ≤ 1.5 (i.e.  equivalent to initial 
instantaneous reproduction number (Rt) ≤ ~1.6). Because SARS-CoV-2 outbreaks can have R0 values appreciably 
above 1.5, testing can be made more effective by combining it with other measures to reduce R0, such as masking, social 
distancing, and other non-pharmaceutical interventions.

If R0 is below ~1.5, or can be reduced to that point through public health interventions, increasing testing  
from 100 tests per 100 000 people per day (current minimum testing rate target set by the ACT-A Diagnostics Pillar) 
to 200–400 tests per 100 000 people per day provides the greatest marginal increases in testing utility (i.e. 
infections averted per test performed). Again, the greatest utility of these tests is only achieved if they are dedicated to 
symptomatic testing.

The current minimum testing rate target by the ACT-A Diagnostics Pillar of 100 tests per 100,000 people per 
day is likely insufficient to saturate symptomatic testing demand. In turn, the much lower recommended testing rate 
by the World Health Organization of 100 tests per 100,000 people per week (i.e. 14 tests per 100,000 people per day) is not 
sufficient as well.   

After saturating testing demand from symptomatic individuals who sought testing at healthcare facilities, any 
additional tests allocated for asymptomatic community testing should be prioritized for distributions across 
households. Relative to schools, formal workplaces and regular mass religious gatherings, community testing through 
households yields greater reduction in transmissions. However, this is only possible after symptomatic testing demand has 
been largely satisfied.    

MAIN FINDINGS FROM PHASE 2
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In Phase 2, we identified that community testing will only achieve 
high levels of infection reduction after symptomatic testing 
demand is saturated. As expected, this demand rapidly increases 
with R0. Importantly, the current minimum testing rate target by the 
ACT-A Diagnostics Pillar of providing 100 tests per 100 000 persons 
per day is likely to fall far short of meeting this demand. In other 
words, even before facilitating any form of asymptomatic community 
testing, the current greatest priority should be to increase 
investments in testing availability to meet symptomatic 
testing demand. Testing can potentially be increased through 
implementations of new innovations at healthcare-provided testing 
facilities such as the integration of self-testing at these facilities. 

SUMMARY AND NEXT STEPS 

The next phase of our work will focus on how the accumulation 
of immunity over the first two years of the pandemic and the 
distribution of antiviral therapeutics could impact testing utility, how 
community structures in different countries as well as alternative 
testing strategies such as self-testing could impact the effectiveness 
of testing programs. We will also update our results simulating 
epidemics of more recent variants-of-concern (i.e. Delta and 
Omicron) that have shorter generation intervals.  
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Real-time reverse transcription polymerase chain reaction (RT-
PCR) tests remain the gold standard for COVID-19 diagnostic 
testing with higher test sensitivity (>95%) than antigen-detecting 
rapid diagnostic tests (Ag-RDTs), but they require sophisticated 
laboratory infrastructure, sample transport, skilled personnel and 
can be plagued by long turnaround times. While Ag-RDTs may have 
lower test sensitivity (>80%), they can be performed at the point-
of-care and provide results within 10 to 30 minutes. Ag-RDTs can 
be utilized for both the scale up of diagnostic testing in resource-
limited settings where RT-PCR testing capacity is constrained and 
to support surveillance or response efforts where RT-PCR testing is 
more readily accessible. 

Ag-RDTs also have the potential to be of substantial utility in a range of 
scenarios and settings for the control and mitigation of the COVID-19 
pandemic, especially in resource-limited settings. Identifying the use 
cases in which Ag-RDTs can best be utilized to support the largest 
reductions in onward transmission is important for decision-making 
and resource allocation efforts, particularly during the heightened 
demand when SARS-CoV-2 transmission is high. The aim of the 
Phase 1 use case analysis was to identify a range of scenarios 
across the various sectors of society where Ag-RDT screening 
for COVID-19 would be appropriate for use: community testing, 
schools and universities, sporting events, concerts and places of 
worship, and for exiting quarantine and isolation periods. Phase 1 
leveraged mathematical models from multiple modelling groups to 
address use-case specific questions. The different use case settings 
presented in the Phase 1 report required different testing strategies 

DIAGNOSTIC TESTING FOR SARS-COV-2 REMAINS 
AN IMPORTANT TOOL IN THE COVID-19 PANDEMIC 

RESPONSE BY ALLOWING FOR THE TIMELY 
DETECTION AND ISOLATION OF INFECTIOUS 

CASES, REDUCING THE POTENTIAL FOR FURTHER 
TRANSMISSION.

INTRODUCTION

MAIN REPORT 

to most efficiently and effectively reduce infections across a range 
of epidemic conditions. In particular, Phase 1 found that the speed 
and frequency of antigen rapid testing to identify SARS-CoV-2 cases 
outweighed the benefit of higher test sensitivity of RT-PCR, making 
Ag-RDTs a valuable tool for case detection, outbreak investigation 
and contact tracing. The results from these use cases provide the 
beginning of an evidence base for the use of Ag-RDTs in various 
settings and quantify the value of expanding access to Ag-RDTs. 

The results presented for the use cases in Phase 1 only quantified 
the effectiveness of testing strategies on reducing transmissions 
within each use case. They did not offer any information on 
the impact of each use case on the broader community or the 
effects these testing strategies could have on onward community 
transmission. Importantly, the results of each use case from 
Phase 1 cannot be directly compared with one another because of 
differences in the underlying modelling frameworks and the lack of 
explicit consideration of the proportion of any population that might 
be captured within any particular use case. Further, while these 
findings emphasized the value of widespread, high frequency Ag-
RDT use, they acknowledged that health systems in resource-limited 
settings may have difficulty scaling up testing to this extent; thus, 
it is imperative to determine the optimal testing strategy that 
balances trade-offs between feasibility, costs, and reduction in 
infections. 

The aim of this phase of the work was to develop and use 
an agent-based modelling framework to investigate the 
relative potential effectiveness of combining use cases for 
a representative low- and middle-income country (LMIC) 
archetype (representative defined in terms of demographic profile, 
urban/rural geography, mixing patterns, and level of public health 
resources). Using this modelling framework, we investigated the 
potential impact of using Ag-RDTs for testing of individuals with 
COVID-19 symptoms (symptomatic testing), both with and without 
the combination of asymptomatic community testing, on onward 
disease transmission according to different Ag-RDT allocation 
strategies and availability in four social settings: households, 
schools, formal workplaces and churches. 
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METHODS

PROPELLING ACTION FOR TESTING AND TREATMENT (PATAT)

PATAT is a stochastic agent-based model that is designed to 
investigate the impact of professional-use Ag-RDTs provided 
in healthcare clinics to symptomatic individuals, as well as 
asymptomatic community testing during COVID-19 outbreaks in 
LMICs (Figure 1). This model is similar to Covasim1 (a widely used 
agent-based modelling framework for studying the epidemiology of 
SARS-CoV-2), but is importantly different in terms of its structure 
which can more closely mirror the SARS-CoV-2 epidemic in LMICs. 
In each PATAT simulation, an age-structured population of individuals 
(agents) is first created within contact networks in households, 
schools, workplaces and churches (i.e. mass gatherings) based 
on realistic demographic data. Additionally, healthcare clinics 
where agents seek symptomatic testing are also distributed within 
the simulated population based on a given healthcare clinic-to-
population ratio. Although PATAT does not model the geolocation 
of agents explicitly, households, schools, churches and healthcare 
clinics are ordered to implicitly approximate a neighborhood 
(localized community) structure. The movements of each agent 
within the community are recorded daily. 

The simulation starts by seeding a proportion of agents with SARS-
CoV-2 infection. Given that the sensitivity of Ag-RDTs depends on 
the viral loads of individuals at the point of testing,2 PATAT generates 

Figure 1.	Schematic of the Propelling Action for Testing And Treatment (PATAT) simulation model
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a within-host viral load trajectory for each infected agent during the 
course of their infection by randomly drawing from a distribution of 
known within-host viral load trajectories using previously developed 
methods3. We used incubation and viral shedding periods reported 
for wild-type SARS-CoV-2 in this work. Owing to the lack of robust 
data for asymptomatic infected people, we conservatively assumed 
their viral load trajectories are drawn from similar distributions. 
PATAT then simulates the epidemic by iterating over a given period 
of time with each time step corresponding to one day. For each day, 
the simulation first updates the disease progression of infected 
individuals based on the SEIRD (Susceptible-Exposed-Infectious-
Recovered /Death) epidemic model, further stratifying infected 
agents based on symptom presentation (i.e. asymptomatic, mild or 
severe). Depending on the proximity from their homes, symptomatic 
agents may seek symptomatic testing at the nearest healthcare 
clinics after a random delay since symptom onset (drawn from a 
lognormal distribution of mean 1 day; s.d. = 0.5 day). PATAT then 
updates the status of agents who are isolated/quarantined, including 
simulating agents who stop adhering to these restrictions prior to 
the stipulated isolation/quarantine period. Community testing for 
SARS-CoV-2 by Ag-RDT may then be applied according to allocation 
strategies and availability. Finally, PATAT computes transmission 
events within different contact networks over the course of the day. 
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DISTRIBUTION OF HEALTHCARE-PROVIDED COMMUNITY TESTS

HEALTHCARE-PROVIDED SYMPTOMATIC TESTING DEMAND

We investigated performing community testing in four social settings: 
households, schools, formal workplaces and churches. These 
settings were chosen because of their fixed nature and potential 
accessibility for implementing testing programmes. 

One of the key challenges for establishing a testing programme 
is estimating demand. This is particularly challenging for SARS-
CoV-2 because the range of symptoms substantially overlaps with 
other infections, like influenza, and therefore substantially increases 
testing demand. We assumed that symptomatic SARS-CoV-2-
infected agents would seek testing at healthcare clinics based on 
a probability distribution that inversely correlate with the distance 
between the agent’s household and the nearest healthcare clinic 
(Supplemental Figure 5 and Supplemental Table 1)4. 

Furthermore, we also simulated a daily demand of clinic tests from 
agents that were not infected by SARS-CoV-2 but seek clinic-
based professional use symptomatic testing for other reasons (i.e. 
individuals presenting COVID-19-like symptoms or close contacts of 
agents who tested positive previously). This non-COVID-19 related 
demand for testing was estimated by assuming a 10% test positivity 
rate at the start and end of an epidemic curve and 20% test positivity 
rate at the peak, linearly interpolating the demand for periods 
between these time points (Figure 2). These estimates are based 
on observed case positivity rates in multiple countries during the 
second half of 20215. If there are limited healthcare clinic test stocks 
for the day, the available tests are randomly distributed among 
symptomatic SARS-CoV-2-infected patients and those seeking tests 
for other reasons. We assumed that all agents who failed to receive a 
test due to test shortage would not seek clinic-provided testing again 
for the rest of their infection. If these agents had previously decided 
to self-isolate upon presenting symptoms, they may continue to do 
so (see below). Otherwise, we assumed that they would continue to 
mix within the community.

In terms of dividing test stocks between symptomatic and 
community testing, we considered two approaches: (1) strictly 
allocate 15% of all available tests per week to healthcare clinics for 
symptomatic testing, with the rest used for community testing; or (2) 
per-week demand of tests at healthcare clinics will be satisfied first 
for the current week before allocating the leftovers for community 
testing in the subsequent week. 

An example of the second scenario would be that on Monday of 
each week, we assume that one week’s worth of Ag-RDT stock is 
available for testing that week. If the allocation of tests is 100 tests 
per 100,000 persons per day then 700 tests per 100,000 people 
are delivered to healthcare clinics for that week. If all 700 tests are 
used before the following Monday, no more testing can be performed 
until the new delivery of tests on Monday. If some portion of the 700 
tests remain unused and there is no community testing programme, 
then those remaining tests are added to the tests delivered for the 
following week. If some portion of the 700 tests remain unused and 
there is a community testing programme, then those remaining tests 
are used for community testing in that week.

1.	 An even distribution to as many entities as possible once 
per week. For example, if we have 10 tests available for 10 
households per week, then one member of each household 
would get a test.

2.	 A concentrated distribution to test every individual in 
selected entities twice a week and the same individuals 
in the same selected entities will be tested every week. 
For example, if we have 10 tests available for 10 households 
per week but only one of which house five members, then all 
10 tests will be distributed to this selected household of five 
for testing on Monday and Thursday of every week while the 
remaining nine other households will not be tested. 

For each setting, we simulated two ways in which the 
community test stocks may be distributed:

Figure 2.	Projected symptomatic testing demand based on  
	 assumed case positivity rate. This projected demand  
	 includes both SARS-CoV-2 infected persons who were tested  
	 and reported, as well as those who seek symptomatic testing  
	 for other reasons (e.g. individuals presenting COVID-19-like  
	 symptoms but are not infected by SARS-CoV-2).
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ISOLATION AND QUARANTINE SIMULATION VARIABLES

Once an agent goes into isolation/quarantine, we linearly interpolate 
their probability of adherence to stay in isolation/quarantine over the 
respective period. Given the lack of infrastructure and resources to 
set up dedicated isolation/quarantine facilities in many LMICs, we 
assumed that all isolated and quarantined individuals would do so at 
home. Although they would have no contact with agents outside of 
their home, we assumed that they would maintain 90% contact rate 
with household members. 

We performed all simulations assuming a populations size of 
1 million agents, creating contact networks and healthcare 
clinics based on data collected from Zambia7–10 and Malawi4 

(Supplemental Table 1). We initialized each simulation with 1% of 
the population being infected by SARS-CoV-2 and ran the model over 
a 90-day period. We permutated a range of R0 values (i.e. 0.9, 1.1, 
1.2, 1.5, 2.0, 2.5 and 3.0) against varying Ag-RDT stock availability 
(100, 200, 400, 800, 1000, 2000, 3000, 4000, 5000 tests per 
100,000 persons per day). 

As a baseline, we simulated a set of runs under different R0 values 
with no testing at all. We performed two sets of analyses for the 
aforementioned range of R0 and test availability – one with same-
day quarantine of household members of agents testing positive 
and another without. While we assumed that quarantined household 
members reduce their contact rates minimally with infected 
members who were isolated in the same home, this distinction is 
important because quarantine of household members still reduces 
their social contacts with individuals outside of their homes, and thus 
should have the net impact of changing the contact patterns of more 
individuals for each test used and should increase the utility of those 
tests. 

All other key parameters are tabulated in Supplemental Table 1 
and further technical details of the PATAT model are described in 
the Appendix.

1.	 they start to present symptoms and go into self-isolation 
without testing (10% compliance assumed, 71% endpoint 
adherence6); Endpoint adherence is the probability that 
an isolated/quarantined individual will remain in isolation/
quarantine up to the last day of the stipulated isolation/
quarantine period;

2.	 they tested positive and were isolated for 10 days (50% 
compliance assumed, 86% endpoint adherence6); or 

3.	 they were household members of agents testing positive 
for SARS CoV-2 who did not present any symptoms and 
were asked to go into quarantine for 14 days (50% compliance 
assumed, 28% endpoint adherence6).

We assumed that agents would change  
their behaviour when:
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RESULTS

HEALTHCARE-PROVIDED SYMPTOMATIC TESTING DEMAND SHOULD BE FULFILLED FIRST 

We first simulated scenarios where either all Ag-RDT stocks were 
used for symptomatic testing or only 15% of weekly available 
stocks were allocated for symptomatic testing and the rest used for 
community testing. As a measure of impact for each testing strategy, 
we computed the proportion of infections averted compared with 
the baseline where no testing was done. Regardless of the social 
setting where community test distribution was implemented or 
the value of R0, we found that setting aside large proportions of 
Ag-RDTs for community testing generally led to a lower proportion 

of infections averted (worse outcomes) than if all tests were used 
for symptomatic testing only (Figure 3). Community testing would 
usually only outperform symptomatic testing when the same number 
of available tests had saturated symptomatic testing demand (i.e. all 
symptomatic SARS-CoV-2-infected agents who sought symptomatic 
tests were tested). This conclusion remains the same when 
household members of all agents testing positive were quarantined 
(Supplemental Figure 1).

Figure 3.	 Impact of either using all available Ag-RDTs for symptomatic testing or a majority of them (85%) for community testing in various  
	 settings (even distribution only; without quarantine of household members).  The proportion of secondary infections averted after 90 days  
	 relative to the no testing baseline for different number of tests available per 100,000 persons per day is plotted for each test distribution  
	 strategy. The vertical red line denotes the number of tests required to saturate symptomatic testing demand.  
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Figure 3.	 Impact of either using all available Ag-RDTs for symptomatic testing or a majority of them (85%) for community testing in various  
	 settings (even distribution only; without quarantine of household members).  The proportion of secondary infections averted after 90 days  
	 relative to the no testing baseline for different number of tests available per 100,000 persons per day is plotted for each test distribution  
	 strategy. The vertical red line denotes the number of tests required to saturate symptomatic testing demand.  
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NUMBER OF TESTS REQUIRED TO SATURATE HEALTHCARE-PROVIDED SYMPTOMATIC TESTING DEMAND 

The minimum number of tests required to saturate symptomatic 
testing demand increases rapidly with R0 (Figure 3-4A). Importantly, 
the current recommended target of 100 tests per 100,000 persons 
per day (tests/100k/day) was insufficient in meeting symptomatic 
testing demand for the entire range of R0 values simulated. We had 
factored in 80–90% of uninfected agents who sought symptomatic 
testing for other reasons (e.g. presented COVID-19-like symptoms, 
etc.) on top of symptomatic SARS-CoV-2 infected agents who sought 
to be tested (i.e. 10–20% test positivity rate over epidemic course). 
As clinics cannot know which agents were infected by SARS-CoV-2 
a priori, there must be enough Ag-RDTs available for symptomatic 
testing, so that everyone who visited them for testing were tested. 

Even when R0≤1.2 (where the average instantaneous reproduction 
number (Rt) was <1 during the first week of the epidemic; Figure 
4B), at least 200–400 tests/100k/day was needed to ensure that 
all symptomatic SARS-CoV-2-infected agents who sought testing 
were tested. When R0≥1.5 (where we observed exponential growth 
in infections and average Rt during the first week of the epidemic 
was > 1.5), at least 10 times more tests, in the range of 2000–5000 
tests/100k/day, was needed to test all test-seeking symptomatic 
patients with COVID-19. These conclusions were similar even 
when we quarantine household members of agents testing positive 
(Supplemental Figure 2). 
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Figure 4.	Symptomatic testing demand during an epidemic (without quarantine of household members).  
	 (A) Number of symptomatic tests performed per 100,000 persons per day over time for different R0. Each differently coloured shaded curve  
	 denotes a different number of tests available per 100,000 persons per day. We assumed that all healthcare facilities in the community will have  
	 new stocks of one week’s worth of Ag-RDTs every Monday. The symptomatic testing demand include both symptomatic SARS-CoV-2-infected  
	 agents who seek testing at healthcare facilities and those who seek symptomatic testing for other reasons based on assumed case positivity  
	 rates (see Methods). The area between the curve plotting number of tests needed to saturate symptomatic testing demand (Nsat) and any other  
	 curves plotting N<Nsat is the amount of symptomatic testing shortage accumulated over time.  
	 (B) 7-day moving average of instantaneous reproduction number (Rt) over simulated epidemic period (90 days) for different assumed basic  
	 reproduction number (R0). 
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MARGINAL IMPACT OF SYMPTOMATIC TESTING PRIOR TO SATURATING DEMAND

We then quantified the marginal benefit of having more tests 
allocated for symptomatic testing prior to demand saturation, in 
terms of infection reduction over the simulated epidemic. To do so, 
we linearly regressed the number of infections averted against test 
availability to compute the number of additional infections averted 
per 100 more Ag-RDTs before saturating symptomatic testing 
demand (Figures 5A-B). If we only isolate agents testing positive 
without further quarantine, the largest marginal benefit of increasing 
Ag-RDT availability for symptomatic testing prior to demand 
saturation is achieved when R0 = 1.1–1.2, with close to 20,000 
additional infections averted for every 100 more Ag-RDTs available 
for symptomatic testing (Figure 5B; Table 1). When operating at 
levels of tests availability that meet all symptomatic testing demand, 
the greatest impact is also achieved when R0 = 1.1–1.2 with ~40% 
of total infections averted (Figure 5A). 

However, the benefits of having more tests allocated for symptomatic 
testing diminish exponentially with increasing values of R0 – both in 
terms of the marginal benefit prior to demand saturation as well as 
the maximum impact achieved at demand saturation (Figure 5A-B 
and Table 1). Nonetheless, there are other impacts besides infection 

reduction that could be gained from performing more symptomatic 
testing at values of R0>1.2. For instance, for R0 values between 1.5 
and 2.0 without quarantining household members, it is possible 
to reduce daily transmissions by up to 11% with increasing levels 
of test availability during the growth phase of the epidemic (Rt>1; 
Figure 5C). Additionally, when R0~1.5 and test availability is in the 
range of 2000 tests or more, it is possible to shorten the duration 
of the epidemic’s growth phase (and in turn, the epidemic itself) by 
about one week (Figure 5D). 

The aforementioned marginal benefits of symptomatic testing can 
be further augmented if household members of agents testing 
positive were required to quarantine as well (Supplemental 
Figure 3). However, depending on R0 and level of test availability, 
the percentage of infections averted only improved modestly by 
2–10%. As we assumed that agents would isolate and quarantine in 
their own homes (see section on community testing in households 
below for justification and details), infectious agents in isolation will 
continue to be in contact, and as such, often infect healthy household 
members in quarantine with them. 

Table 1.	 Number of additional infections averted for every 100 more Ag-RDTs available prior to saturating symptomatic testing demand for 
	 different R0 values.

With quarantine of 
household members

R0

No. of additional infections
averted per 100 more tests

NO
 
 

0.9 1,772

1.1 19,807

1.2 19,372

1.5 3,655

2.0 1,149

2.5 401

3.0 216

YES

0.9 2,205

1.1 23,444

1.2 23,250

1.5 5,702

2.0 1,999

2.5 853

3.0 441
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Figure 5.	Marginal impact of symptomatic testing prior to saturating demand (without quarantine of household members).  
	 (A) Contour plots depicting infections averted relative to the no testing baseline for simulations with different R0 values and varying number of  
	 available Ag-RDTs. Number of infections averted relative to no testing baseline after 90 days (left panel); proportion of secondary infections  
	 averted relative to no testing baseline after 90 days (right panel).   
	 (B) Number of additional infections averted for every 100 more Ag-RDTs available prior to saturating symptomatic testing demand for different  
	 R0 values. Dashed red line shows marginal benefit with quarantine of household members while solid black line depicts that without quarantine.  
	 (C) Mean daily percentage reduction in transmissions while instantaneous Rt of simulated epidemic is still > 1 for different R0 values and varying  
	 number of Ag-RDTs available for symptomatic testing only.  
	 (D) Shortening of the number of days when instantaneous Rt of simulated epidemic is still > 1 for different R0 values and varying number of  
	 Ag-RDTs available for symptomatic testing only.  
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A SYMPTOMATIC-TESTING-FIRST STRATEGY TO COMMUNITY TESTING

Given the importance of symptomatic testing, we then simulated an 
alternate test stock allocation approach for community testing that 
prioritizes the fulfillment of symptomatic testing demand first. Rather 
than setting aside a fixed proportion of tests for community testing 
every week, all available Ag-RDTs for one week will be used for 
symptomatic testing demand first that week. If there are any tests 
leftover in the previous week, these Ag-RDTs will then be distributed 
for community testing in the current week. In other words, as opposed 
to saving unused test stocks during the pre-exponential growth phase 
for the greater symptomatic testing needs during the epidemic peak 
(as was the case when all tests were used for symptomatic testing 
only), these tests would be used to screen for asymptomatic and 
other infected agents who did not seek symptomatic testing. We also 
investigated two ways in which community tests were distributed 
among the intended social setting – either 1) evenly and randomly 
distribute the tests to as many agents associated with these settings 
as possible, or 2) concentrate the available tests to a fixed number of 
persons throughout the epidemic period. 

Even under this symptomatic-testing-first approach, community 
testing in most social settings, with the exception of households, 
would only yield greater impact in infection reduction when test 
availability is higher than what is needed to meet symptomatic 
testing needs (Figure 6). Overall, household testing yielded the 
greatest improvement in infections averted for all simulated R0 
values, followed by schools if R0≤1.5. On the contrary, testing in 
churches and formal workplaces only result in modest improvements 
over symptomatic testing only. Comparing even and concentrated 
distribution of community tests, it is clear that a more equitable 
distribution to as many agents as possible tends to produce larger 
reductions in total infections. The difference between even and 
concentrated community test distributions also increases with 
larger test availability. These results were similarly observed when 
household members of agents testing positive were quarantined 
(Supplemental Figure 4). 

Figure 6.	Symptomatic-testing-first strategy to community testing (without quarantine of household members). When community testing is  
	 performed under this strategy, the leftover tests from the previous week’s stock allocated for symptomatic testing are used for community  
	 testing in various setting in the current week. Two different types of community test distribution approaches (even or concentrated; see Methods)  
	 were simulated. The proportion of secondary infections averted after 90 days relative to the no testing baseline for different number of tests  
	 available per 100,000 persons per day is plotted for each test distribution strategy. The vertical red line denotes the number of tests required to  
	 saturate symptomatic testing demand.

Symptomatic testing only

Household

School

Workplace

Church

Even distribition

Concentrated distribition

PR
OP

OR
TI

ON
 O

F 
SE

CO
N

DA
RY

 IN
FE

CT
IO

N
S 

AV
ER

TE
D

 A
FT

ER
 9

0 
DA

YS
 R

EL
AT

IV
E 

TO
 N

O 
TE

ST
IN

G 
(%

)

0

10

20

30

40

50

60

70

1000
2000

3000
4000

5000
200

100

R0 = 0.9

0

10

20

30

40

50

60

70

1000
2000

3000
4000

5000
200

100

R0 = 1.1

NO. OF TESTS AVAILABLE PER 100,000 PERSONS PER DAY

0

10

20

30

40

50

60

70

1000
2000

3000
4000

5000
200

100

R0 = 1.2

0

10

20

30

40

50

60

70

1000
2000

3000
4000

5000
100

R0 = 1.5

14



Figure 6.	Symptomatic-testing-first strategy to community testing (without quarantine of household members). When community testing is  
	 performed under this strategy, the leftover tests from the previous week’s stock allocated for symptomatic testing are used for community  
	 testing in various setting in the current week. Two different types of community test distribution approaches (even or concentrated; see Methods)  
	 were simulated. The proportion of secondary infections averted after 90 days relative to the no testing baseline for different number of tests  
	 available per 100,000 persons per day is plotted for each test distribution strategy. The vertical red line denotes the number of tests required to  
	 saturate symptomatic testing demand.
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COMMUNITY TESTING IN HOUSEHOLDS

Strikingly, in a symptomatic-testing-first approach where any weekly 
leftover tests from symptomatic testing, particularly during the pre-
exponential growth phase of the epidemic, were used for community 
testing, household community testing actually outperformed the 
symptomatic-testing-only strategy prior to satisfying symptomatic 
testing demand. This, however, is only possible when absolute levels 
of testing were very high (Figure 6 and Supplemental Figure 4). 
There are several reasons as to why household testing performed 
the best in our simulations, while community testing in other settings 
such as churches and formal workplaces was less effective. First, 
we assumed a mean household size of 5 persons and generated 
large multigenerational homes, as commonly found in many LMICs. 
Second, population in LMICs also tend to skew young (i.e. 48.3% of 
the population are expected to be ≤15 years in age7). Furthermore, 
overall employment rates are low (i.e. assumed 39% and 23% among 
men and women respectively8) and a large majority of employed 
agents likely work in informal employment settings (i.e. assumed 
64% and 76% among employed men and women respectively8), 
where workplace test distribution is assumed to be difficult or 
infeasible. Third, dedicated isolation and quarantine facilities are 
likely rare in low-resource settings. Thus, we assumed that agents 
testing positive and their close contacts could only isolate themselves 
in their own homes. As such, almost 60% of all infections observed in 
a typical simulation arose from transmissions in households (Figure 
7A). Random community transmissions aside, schools are then the 
second most common setting where transmissions occurred (~14%) 
and workplaces, be it formal or informal, the least common (<3%). 

Interestingly, even though we assumed that 70% of all households 
regularly attended large church congregations every Sunday, 
churches contributed to a limited proportion of total infections (~5%). 
Yet, if we compare the results between household and church testing 
at levels of test availability large enough to satisfy symptomatic 
testing demand (e.g. N=5000), the total number of diagnosed cases 
over time is actually largely similar for both community testing 
strategies (Figure 7B). In fact, testing in churches yielded a relatively 
larger number of cumulative diagnoses by the end of the simulated 
epidemic but household testing suppressed Rt more during the 
growth phase of the epidemic, resulting in a greater number of 
infections averted over time. An explanation for this is simply that 
there tend to be more transmissions happening in households, as 
discussed before. However, the reasons behind this observation are 
far more nuanced.  

To elucidate this further, we quantified the impact of how community 
testing within a social setting could impact the level of transmissions 
in other settings. As PATAT tracks the setting where each transmission 
event took place, we are able to compute the proportion of “spillover”  
events where the setting in which the infector was infected differs 
from where they infect their infectee (e.g. if an infector infected an 
individual in the household setting but the infector was themselves 
infected in school). We found that relative to church testing, 
household testing not only reduced the number of infections taking 
place in households, it also decreased the number of “spillover” 
events between most non-identical settings (Figure 7C-D). 

Figure 7.	Community testing in households outperforms other settings.  
	 (A) Typical breakdown of infections based on the social setting where transmissions occurred for the simulations presented in this work.  
	 (B) As an example, results from simulations using different testing strategies where R0=1.5, no quarantine of household members of agents  
	 testing positive assumed, and Ag-RDT availability of 5000 tests per 100,000 persons per day. Community testing (even distribution) was  
	 performed with a symptomatic-testing-first approach. The average total number of diagnosed cases (left), instantaneous reproduction number  
	 (Rt; middle) and number of infections averted (right) over the epidemic period are plotted.  
	 (C, D) Transmission “spillover” between different settings. The top row of stacked plots shows the breakdown of infections exported into each  
	 transmission sink setting (i.e. where the infectee of a transmission was infected) from other source settings (i.e. where the corresponding  
	 infector of a transmission was infected). The stacked bars are coloured by the source settings. The bottom row of bar plots shows the  
	 contribution of transmission exports into other settings from different source settings (i.e. the infectee of a transmission event was infected in a  
	 setting that is not the same as where their infector was infected).  
	 (C) No testing baseline results from the example case as in (B).  
	 (D) Results from either implementing a symptomatic-testing-first community testing in households (left column) or church (right column).  
	 The dashed bar outlines are the no testing baseline results as in (C).
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Figure 7.	Community testing in households outperforms other settings.  
	 (A) Typical breakdown of infections based on the social setting where transmissions occurred for the simulations presented in this work.  
	 (B) As an example, results from simulations using different testing strategies where R0=1.5, no quarantine of household members of agents  
	 testing positive assumed, and Ag-RDT availability of 5000 tests per 100,000 persons per day. Community testing (even distribution) was  
	 performed with a symptomatic-testing-first approach. The average total number of diagnosed cases (left), instantaneous reproduction number  
	 (Rt; middle) and number of infections averted (right) over the epidemic period are plotted.  
	 (C, D) Transmission “spillover” between different settings. The top row of stacked plots shows the breakdown of infections exported into each  
	 transmission sink setting (i.e. where the infectee of a transmission was infected) from other source settings (i.e. where the corresponding  
	 infector of a transmission was infected). The stacked bars are coloured by the source settings. The bottom row of bar plots shows the  
	 contribution of transmission exports into other settings from different source settings (i.e. the infectee of a transmission event was infected in a  
	 setting that is not the same as where their infector was infected).  
	 (C) No testing baseline results from the example case as in (B).  
	 (D) Results from either implementing a symptomatic-testing-first community testing in households (left column) or church (right column).  
	 The dashed bar outlines are the no testing baseline results as in (C).
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DISCUSSION

Using PATAT, an agent-based simulation model that combined 
various use-cases and design elements used in the Phase 1 
modelling study, we interrogated the impact that testing with rapid 
antigen diagnostics has in reducing SARS-CoV-2 transmissions in 
LMICs. We found that community testing will only achieve high 
levels of infection reduction after demand for testing from 
individuals with symptoms of COVID-19 is satisfied. As expected, 
symptomatic testing demand primarily depends on and rapidly 
increases with R0. Importantly, the current ACT-A Diagnostics Pillar’s 
minimum target of providing 100 tests per 100,000 persons per day 
fell far short in meeting this demand, even with scenarios where 
Rt<1 (i.e. equivalent to simulated epidemics where R0≤1.2), and thus 
even much less so for Rt that would result in exponential growth of 
infections (i.e. equivalent to simulated epidemics where R0≥1.5). 

In other words, even before facilitating any form of community 
testing, the current greatest priority should be to increase 
investments in testing availability in meeting symptomatic 
testing demand. As SARS-CoV-2 outbreaks can have R0 appreciably 
above 1.5 (i.e. equivalent to initial Rt>1.6), it is important that we 
combine testing with other measures such as social distancing 
and other non-pharmaceutical interventions so as to maximize 
impact. If R0<1.5, or can be reduced to that point through other 
public health interventions, increasing testing capacity from 

100 tests/100k/day to 200-400 tests/100k/day provides the 
greatest proportional reduction in secondary transmissions. In 
short, testing itself has the potential to be most effective at reducing 
transmission when R0<1.5.

To corroborate our results to the real-world data, we matched the 
monthly average testing rate (https://www.finddx.org/covid-19/test-
tracker/) to the monthly average Rt values estimated from COVID-19 
case counts11 of each country between December 2021 and March 
2022 when the Omicron variant-of-concern (VOC) spread rapidly 
across multiple countries (Figure 8). Although the demographic 
profiles differ between high-income countries (HICs) and LMICs, 
we found that HICs were expectedly testing at rates that were 
sufficient or even larger than what was likely needed to saturate the 
symptomatic testing demand we had estimated for LMICs at similar 
epidemic intensity. Additionally, as Omicron cases surged, even 
HICs such as the United States (U.S.), Germany and Australia were 
reportedly facing test shortages12–14. Based on our results, we also 
found that these countries likely fell short of meeting symptomatic 
testing demand under equivalent secondary transmission potential. 
Finally, if we assume that most HICs are testing at rates that 
sufficiently meet symptomatic testing demand, we found that most 
of them were testing at least 200 tests/100k/day, which is in line 
with our recommendation of minimum testing capacity for LMICs.   

Figure 8.	Global reported COVID-19 testing rate between December 2021 and March 2022 during which Omicron spread rapidly across multiple  
	 countries. Each data point denotes the average monthly reported COVID-19 testing rate of a country against the average instantaneous  
	 reproduction number (Rt) computed in the same month and is coloured by the income level of the country. Selected data points that are  
	 annotated with country names denotes the testing rate on the month at which Rt is the highest during the four-month time period. The shaded  
	 area denotes the level of test availability we had estimated to saturate symptomatic testing demand given different equivalent initial Rt values  
	 (Figure 4). The red vertical line at 100 tests per 100,000 persons per day is the minimum testing rate target set by the ACT-A Diagnostics Pillar.  
	 Testing rate data were sourced from the SARS-CoV-2 Test Tracker by FIND (https://www.finddx.org/covid-19/test-tracker/) while Rt was  
	 computed from reported COVID-19 case counts11.
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If there is enough test availability for community testing after 
symptomatic testing demand has been saturated, it is also important 
to also consider where to prioritize community testing. Given that a 
larger proportion of infections is expected to occur within households 
which can be further amplified by larger household sizes observed in 
many LMICs, even distribution of tests across households every 
week after attempts to meet symptomatic testing demand in the 
previous week would result in the greatest infections averted. 
While testing at mass gatherings such as churches every Sunday, 
for instance, would lead to comparable levels of diagnosis, doing so 
only effectively totals the amount of infections that had happened 
previously in the week to decrease infections at these gatherings. 
In Figure 7B, the number of diagnosed cases from community 
testing at church and households were similar. However, in Figure 
7D, testing at church mostly decreased the amount of infections 
occurring at churches while testing at households decreases 
“spillover” transmissions across different social settings. This is 
because most transmissions occurred in households. As such, 
testing at churches on Sundays primarily impacts tallying infections 
that happened before Sunday. Disseminating tests evenly across 
households, on the other hand, is more effective in not just lowering 
transmissions happening in households but lessening the amount 
of “spillover” transmissions between different social settings. Self-
testing could play a key role in helping to satisfy symptomatic testing 
demand and be a focal point for household community testing.

THERE ARE LIMITATIONS WITH THE CURRENT 
VERSION OF THE MODEL AND ANALYSES.

First, we assumed all healthcare facilities have access to any 
available Ag-RDT stocks. In other words, we did not consider 
disparities in stocks across different healthcare clinics (e.g. larger 
number of tests may be allocated for community clinics serving 
larger and denser neighborhoods or more tests may be used in 
tertiary facilities) and how this might impact meeting symptomatic 
testing demand and consequently infection reduction. This will be 
investigated in future work. 

Second, we only modelled scenarios where test-and-isolation 
was the only public health intervention. Symptomatic testing 
demand would expectedly be lower if other non-pharmaceutical 
interventions (NPIs) were introduced, and thus potentially improve 
the utility of community testing at lower test availability. However, the 
impact of NPIs is confounded by temporal effects15,16 and thus may 
be difficult to parameterize their mean effects on infection control 

and in turn, testing demand. Since NPIs effectively decreases the 
number of secondary transmissions and in turn, Rt, we expect that 
the testing demand for a population subjected to NPIs and testing 
would mirror that estimated for a population subject to testing only 
but at lower Rt values. Analogously, we also did not model how 
levels of vaccination- and infection-acquired immunity affect testing 
demand explicitly. However, by the same reasoning that increased 
population immunity lowers Rt, the testing demand for a partially 
immune population should be similar to that of a naïve population at 
lower Rt values as well. 

We will, nevertheless, update future simulations to better reflect the 
underlying immune landscape of the population in order to obtain 
more precise estimates of its impact on testing utility and demand. 
Additionally, as antiviral therapies such as Paxlovid and molnupiravir 
are introduced into LMICs17, we will also investigate how different 
distribution strategies of antiviral treatment would impact testing in 
the future. 

Third, while low volumes of tests may only yield negligible 
impacts on infection reduction, they may still provide useful 
information on the prevalence and trajectory of the ongoing 
epidemic. As such, we will also be exploring the value of information 
that can be drawn from varying levels of testing in the next report. 

Fourth, we have currently investigated the utility of routine, 
untargeted asymptomatic community testing. However, current 
WHO guidance prioritizes testing of asymptomatic individuals with 
known exposures to SARS-CoV-2 such as close contacts of positively-
tested people or healthcare workers caring for COVID-19 patients18. 
Furthermore, we had also limited testing option of symptomatic 
individuals to those provided by healthcare clinics. As mentioned 
earlier, self-testing in different community settings, including at 
healthcare facilties19, could be useful in satisifying symptomatic 
testing demand. We will continue to explore these alternative test 
distribution strategies in future work.  

Finally, we had parameterized incubation and virus shedding 
periods using those empirically measured from wild-type 
SARS-CoV-2 for this work. However, generation intervals have 
shortened considerably for recent VOCs such as Delta20 and Omicron 
and could impact the utility of testing in identifying an infection 
before it becomes infectious. We will update our simulations using 
recent VOCs as the circulating virus in the future. Nonetheless, as 
demonstrated by the corrobation of our results on symptomatic 
testing demand against empirical testing data collected during the 
spread of Omicron globally, the minimum required test availability of 
200 tests/100k/day estimated from our results still stand regardless 
of the circulating variant.
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APPENDIX

SUPPLEMENTAL FIGURES

Supplemental 
Figure 1.	 Distribution of households to nearest healthcare facility by distance and corresponding probability (matched by colours of  
	 histogram bar of the left and colour bar on the right) of visiting facility for symptomatic testing. Distribution and probabilities are  
	 based on Dovel et al4 (Supplemental Table 1).  

Supplemental 
Figure 2.	 Impact of either using all available Ag-RDTs for symptomatic testing or a majority of them (85%) for community testing in  
	 various settings (even distribution only; with quarantine of household members). The proportion of secondary infections averted  
	 after 90 days relative to the no testing baseline for different number of tests available per 100,000 persons per day is plotted for each test  
	 distribution strategy. The vertical red line denotes the number of tests required to saturate symptomatic testing demand. 
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Supplemental 
Figure 2.	 Impact of either using all available Ag-RDTs for symptomatic testing or a majority of them (85%) for community testing in  
	 various settings (even distribution only; with quarantine of household members). The proportion of secondary infections averted  
	 after 90 days relative to the no testing baseline for different number of tests available per 100,000 persons per day is plotted for each test  
	 distribution strategy. The vertical red line denotes the number of tests required to saturate symptomatic testing demand. 
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Supplemental 
Figure 3.	 Symptomatic testing demand during an epidemic (with quarantine of household members). Number of symptomatic tests  
	 performed per 100,000 persons per day over time for different R0. Each differently coloured shaded curve denotes a different number of  
	 tests available per 100,000 persons per day. We assumed that all healthcare facilities in the community will have new stocks of one  
	 week’s worth of Ag-RDTs every Monday. The symptomatic testing demand include both symptomatic SARS-CoV-2 infected agents who  
	 seek testing at healthcare facilities and those who seek symptomatic testing for other reasons based on assumed case positivity rates  
	 (see Methods). The area between the curve plotting number of tests needed to saturate symptomatic testing demand (Nsat) and any  
	 other curves plotting N<Nsat is the amount of symptomatic testing shortage accumulated over time.  
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Supplemental 
Figure 4.	 Marginal impact of symptomatic testing prior to saturating demand (with quarantine of household members). (A) Contour plots  
	 depicting infections averted relative to the no testing baseline for simulations with different R0 values and varying numbers of available  
	 Ag-RDTs. Number of infections averted relative to no testing baseline after 90 days (left panel); proportion of secondary infections averted  
	 relative to no testing baseline after 90 days (right panel). (B) Mean daily percentage reduction in transmissions while instantaneous Rt of  
	 simulated epidemic is still > 1 for different R0 values and varying number of Ag-RDTs available for symptomatic testing only.  
	 (C) Shortening of the number of days when instantaneous Rt of simulated epidemic is still > 1 for different R0 values and varying  
	 number of Ag-RDTs available for symptomatic testing only.
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Supplemental 
Figure 5.	 Symptomatic-testing-first strategy to community testing (with quarantine of household members). When community testing  
	 is performed under this strategy, the leftover tests from the previous week’s stock allocated for symptomatic testing are used for  
	 community testing in various setting in the current week. Two different types of community test distribution approaches (even or  
	 concentrated; see Methods) were simulated. The proportion of secondary infections averted after 90 days relative to the no testing  
	 baseline for different number of tests available per 100,000 persons per day is plotted for each test distribution strategy. The vertical red  
	 line denotes the number of tests required to saturate symptomatic testing demand.
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SUPPLEMENTAL TABLES

Parameter Values/Distribution Source

POPULATION DEMOGRAPHY

Total population size 1 million  

Mean household size 5.0 7

Age structure (in bins of 5 years)
[0.161, 0.165, 0.157, 0.101, 0.083, 0.068, 0.057, 0.051, 0.042, 0.030, 
0.024, 0.015, 0.016, 0.009, 0.008, 0.005, 0.006, 0.002, 0.000, 0.000]

7

Minimum prime adult age 20 years Assumed 

Proportion of women 51% 8

Minimum working age 15 years 8

Employment rate 39% (male), 23% (female) 8

Formal employment rate 36% (employed male), 24% (employed female) 8

Schooling rate 79% (male), 40% (female) 7

School gender parity 1.0 (Primary), 0.9 (Secondary) 7

Church participation rate 70% of all households Assumed 

Mean employment contacts (formal) 20 Assumed 

Mean employment contacts (informal) 5 Assumed 

Mean class size 37 (Primary and secondary) 7

Mean school size 700 (Primary and secondary) Assumed

Student-teacher ratio 42 (Primary and secondary) 7

Mean church size (s.d.) 500 (100) Assumed 

Mean random contacts in church per person 10 Assumed 

Mean random community contacts per day 10 Assumed

SARS-COV-2 TRANSMISSION-RELATED PARAMETERS 

Age-structured relative susceptibility  
(in bins of 5 years)

[0.34, 0.34, 0.67, 0.67, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 
1.00, 1.00, 1.24, 1.24, 1.47, 1.47, 1.47, 1.47]

1,21

Age-structured probability of becoming 
symptomatic (in bins of 5 years)

[0.50, 0.50, 0.55, 0.55, 0.60, 0.60, 0.65, 0.65, 0.70, 0.70, 0.75, 0.75, 
0.80, 0.80, 0.85, 0.85, 0.90, 0.90, 0.90, 0.90]

22,23

Age-structured probability of developing 
severe disease (in bins of 5 years)

[0.00050, 0.00050, 0.00165, 0.00165, 0.00720, 0.00720, 0.02080, 
0.02080, 0.03430, 0.03430, 0.07650, 0.07650, 0.13280, 0.13280, 

0.20655, 0.20655, 0.24570, 0.24570, 0.24570, 0.24570]

22,23

Supplemental Table 1. PATAT simulation parameters 
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Parameter Values/Distribution Source

SARS-COV-2 TRANSMISSION-RELATED PARAMETERS 

Age-structured probability of death  
(in bins of 5 years)

[0.00002, 0.00002, 0.00002, 0.00002, 0.00010, 0.00010, 0.00032, 
0.00032, 0.00098, 0.00098, 0.00265, 0.00265, 0.00766, 0.00766, 

0.02439, 0.02439, 0.08292, 0.08292, 0.16190, 0.16190]

24,25

Latent period (days) Lognormal (4.5, 1.5) 1,26

Pre-symptomatic period (days) Lognormal (1.1, 0.9) 1,26

Period between symptom onset  
and severe disease (days)

Lognormal (6.6, 4.9) 26

Period between severe disease  
and death (days)

Lognormal (8.6, 6.7) 26

Recovery period for symptomatic  
agents with mild disease (days)

Lognormal (8.0, 2.0) 27

Recovery period for asymptomatic  
agent (days)

Lognormal (8.0, 2.0) 27

Recovery period of agents with  
severe disease (days)

Lognormal (18.1, 6.3) 23

TESTING PARAMETERS

Delay in visiting healthcare facility for 
symptomatic testing (days)

Lognormal (1.0, 0.5) Assumed

Ag-RDT specificity 0.989 2

Agents to healthcare facilities ratio 7,000:1 9,10

Distance-structured distribution  
of households to nearest healthcare  
facility (in bins of 1 km) 

[0.048, 0.193, 0.119, 0.08, 0.074, 0.098, 0.068, 0.072, 0.056, 0.191] 4 

Distance-structured probabilities of agent 
visiting nearest healthcare facility for 
symptomatic testing (in bins of 1 km)

[0.853, 0.808, 0.762, 0.717, 0.672, 0.626, 0.581, 0.536, 0.49, 0.445] 4

ISOLATION/QUARANTINE PARAMETERS 

Isolation period after testing positive  
for SARS-CoV-2

10 days  

Quarantine period of close contacts 14 days  

Self-isolation period upon onset of 
COVID-19 symptoms without testing

10 days  

Reduction in contact rates under  
isolation/quarantine (in order of 
households, schools, workplaces,  
church and random community)

[10%, 100%, 100%, 100%, 100%]  
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TECHNICAL DETAILS OF THE PROPELLING ACTION  
FOR TESTING AND TREATMENT (PATAT)

POPULATION DEMOGRAPHY
Using input demographic data which includes information such 
as population age and sex distribution, household composition, 
employment and schooling rates, PATAT generates a population of 
individuals who are linked by a series of underlying contact network 
settings where transmission may occur. These contact network 
settings include households, schools, workplaces, regular mass 
gatherings (i.e. church) as well as random community contacts.

HOUSEHOLD
PATAT randomly generates a Poisson distribution of household sizes 
based on the given mean household size. A reference individual 
(e.g. head of the household) above an assumed prime adult age 
(e.g. 20 years) is first randomly assigned to each household. To 
account for multigenerational households, the remaining household 
members are then randomly sampled multinomially by the input 
age distribution of households. Although PATAT does not explicitly 
model the geolocation of agents, households are ordered to implicitly 
approximate neighborhood proximity.

SCHOOLS
PATAT distinguishes between primary and secondary schools. For 
each education level, school-aged children are randomly sampled 
from the population based on given enrollment rates and gender 
parity. Class sizes are then randomly drawn from a Poisson 
distribution based on the input mean class size while constrained by 
the number of school-aged children attending the same grade (i.e. 
age; a class include only students studying the same grade). Schools 
are created by random allotment of classes such that (1) all schools 
will have equitable distributions of classes of all grades for the given 
education level and (2) the total number of students approximately 
equals the expected school size. Classes are then populated 
by schooling agents such that (1) agents of proximally ordered 
households will tend to attend the same school and (2) children of 
the same grade (age) from identical households will not be assigned 
to the same class even though they may attend the same school. 
School teachers are then randomly drawn from the employed prime 
adult population based on the input teacher-to-student ratio and are 
assumed to have contact with each other during school days. Each 
class is randomly assigned to one teacher.

PATAT is a stochastic agent-based model designed to investigate the use and impact of Ag-RDTs in controlling COVID-19 outbreaks in 
LMICs. The computational flow of a PATAT simulation is summarized as follows: First, an age-structured population of agents is created. 
Close contact networks are subsequently created based on the given demographic data. The simulation is then initialized and iterates over 
a given period of time where each time step corresponds to a day. The operations during each timestep encompass updating the disease 
progression of infected individuals, the status of isolated/quarantined agents, application of community testing strategies and computation 
of transmission events within contact networks.

WORKPLACES
PATAT generates both formal and informal workplace contact 
networks based on separate employment rates. Youth (15–19 years) 
employment is also considered in the potential workforce. The 
distinction between formal and informal settings is made as mean 
employee contact rates likely differ between them. Furthermore, 
workplace distribution of Ag-RDTs for community testing is assumed 
to be feasible for formal employment entities only. Unlike schools, 
PATAT does not explicitly model for workplaces but sets up contact 
matrices between employed individuals who would be in regular 
contact at work. Different sizes of workplace contact networks are 
randomly drawn from a Poisson distribution based on the given mean 
employee contact size. An employed agent would only be associated 
with one workplace contact network.

MASS GATHERINGS (CHURCH)
High-density mass gatherings are considered in the model in the 
form of contacts among church congregations. The size of a church 
is assumed to follow a normal distribution with the given mean and 
variance. PATAT assumes that all members of a household will visit a 
church together every Sunday. Other than close contacts with each 
other, each household member would also have a random number of 
close contacts from other households that attend the same church. 
This random contact number is drawn from a Gamma distribution 
with the given shape and scale parameters. Churches are also 
ordered such that proximally ordered households in the same 
neighborhood would visit the same church. 

RANDOM COMMUNITY
PATAT assumes that every agent within a given age range would 
have a random number of contacts with the community daily, drawn 
from a Poisson distribution with a given mean. 
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DISEASE PROGRESSION
PATAT implements a SEIRD epidemic model where the simulated 
population is distinguished between five compartments: susceptible, 
exposed (i.e. infected but is not infectious yet; latent phase), infected 
(which include the presymptomatic infectious period for symptomatic 
agents), recovered and dead. The infected compartments are further 
stratified by their presented symptoms, including asymptomatic, 
presymptomatic, symptomatic mild or severe. All symptomatic 
agents will also first undergo an infectious presymptomatic period 
after the exposed latent period. They will either develop mild 
symptoms (and always recover from the disease) or experience 
severe infection which could either lead to death or recovery. PATAT 
uses the same age-structured wild-type SARS-CoV-2 disease 
severity (psev,age) and mortality (pdea,age) probabilities that were also 
used in Covasim1 (Supplemental Table 1). As a simplification, PATAT 
currently assumes that all agents presenting severe symptoms will 
be hospitalized and removed from the population.
 
The total duration of infection since exposure depends on the symptoms 
presented by the patient and is comprised of different phases (i.e. 
latent, asymptomatic, presymptomatic, onset-to-recovery/death). The 
time period of each phase is drawn from the same distributions used 
by Covasim as well (Supplemental Table 1).

WITHIN-HOST VIRAL DYNAMICS
For each infected agent, PATAT explicitly simulates their viral load 
trajectory of cycle threshold (Ct) values over the course of their infection 
using a stochastic model modified from the one previously developed 
by Quilty et al.3 A baseline Ct value (Ctbaseline) of 40 is established upon 
exposure. The infected agent becomes infectious upon the end of 
the latent period and their Ct value is assumed to be ≤30. A peak 
Ct value is then randomly drawn from a normal distribution of mean 
22.3 and SD of 4.2.29 Peak Ct is assumed to occur upon symptom 
onset for symptomatic agents and one day after the latent period for 
asymptomatic individuals. Cessation of viral shedding (i.e. return to 
Ctbaseline) occurs upon recovery or death. 

PATAT assumes that the transition rate towards peak Ct value should 
not be drastically different to that when returning to baseline upon 
cessation (i.e. there should be no sharp increase to baseline Ct value 
after gradual decrease to peak Ct value or vice versa). As such, the 
time periods of the different phases of infection are randomly drawn 
from the same quintile of their respective sample distribution. The viral 
load trajectory is then simulated by fitting a cubic Hermite spline to the 
generated exposed (texposed, Ctbaseline), latent (tlatent, Ctlatent=30), peak (tpeak, 
Ctpeak) and cessation values (trecovered/death), Ctbaseline). 

The slope of the fitted curve is assumed to be zero for all of them 
except during tlatent where its slope is assumed to be 

PATAT then uses the fitted trajectory to linearly interpolate the viral 
load transmissibility factor (fload,i) of an infectious agent i assuming that 
they are twice as transmissible at peak Ct value (i.e. fload=2) relative to 
when they first become infectious (i.e. Ct value = 30; fload=1). 

TRANSMISSIONS
When an infectious agent i comes into contact with a susceptible 
individual j, the probability of transmission (ptransmission,(i,j)) is given by:

ptransmission,(i,j) = β × Φi × fc × fasymp,i × fload,i × fimmunity,j × fsusceptiblity,j

where β is the base transmission probability per contact, Φi is the 
overdispersion factor modelling individual-level variation in secondary 
transmissions (i.e. superspreading events), fc is a relative weight 
adjusting β for the network setting c where the contact has occurred, 
fasymp,i is the assumed relative transmissibility factor if infector i is 
asymptomatic, fimmunity,j measures the immunity level of susceptible 
j against the transmitted virus (i.e. fimmunity,j=1 if completely naïve; 
fimmunity,j=0  if fully protected), and fsusceptiblity,j is the age-dependent 
susceptibility of j.
 
Φi is randomly drawn from a negative binomial distribution with 
mean of 1.0 and shape parameter of 0.45.30 As evidence has been 
mixed as to whether asymptomatic agents are less transmissible, we 
conservatively assume there is no difference relative to symptomatic 
patients (i.e. fasymp,i=1). The age-structured relative susceptibility 
values fsusceptiblity,j are derived from odds ratios reported by Zhang et al.22

 
β is determined by running initial test simulations with a range 
of values on a naïve population with no interventions that would 
satisfy the target basic reproduction number R0 as computed from 
the resulting exponential growth rate and distribution of generation 
intervals.31 fc is similarly calibrated during these test runs such that 
the transmission probabilities in households, workplaces, schools, and 
all other community contacts are constrained by a relative weighting 
of 10:2:2:1.1 

TESTING BY AG-RDT
Unlike PCR which is highly sensitive due to prior amplification of viral 
genetic materials, the sensitivity of Ag-RDTs depends on the viral 
load of the tested patient. While the specificity of Ag-RDT is assumed 
to be 98.9%, its sensitivity depends on the Ct values of the tested 
infected agent: Ct >35 (sensitivity: 0%); Ct 35 – 30 (sensitivity: 
20.9%); Ct 29 – 25 (sensitivity: 50.7%); Ct ≤24 (sensitivity: 95.8%).2

 
Testing by Ag-RDT may either occur via symptomatic testing at 
healthcare facilities or through healthcare-provided community 
testing. First, a symptomatic agent may opt to go into self-isolation 
upon symptom onset prior to being tested, as decided by a Bernoulli 
trial with probability pself-isolation. Regardless if they were self-isolated, 
after τdelay,symp-test days from symptom onset, the symptomatic agent 
may then decide to get tested with a Bernoulli probability of psymp-test 
that inversely correlates with the distance between the agent’s 
household and the nearest healthcare clinic (Supplemental Figure 5 
and Supplemental Table 1). PATAT assumes that agents who have 
decided against symptomatic testing (i.e. failed Bernoulli trial) or 
received negative test results will not seek symptomatic testing 
again. 

For community testing in schools, we followed the convention used 
in the Phase 1 modelling study. Given that teachers may act as inter-
connecting agents linking between various classes, any available 
Ag-RDTs will always first be distributed to teachers in a school 
before they are distributed to students.  

Ctpeak–Ctbaseline

tpeak–texposed
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