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The COVID-19 pandemic has led to nearly 220 million recorded cases 
and 4.5 million recorded deaths worldwide as of September 2021. 
While vaccination is increasingly used to mitigate the impact of the 
pandemic in high-income settings, diagnostic testing and non-
pharmaceutical interventions remain vital for reducing SARS-
CoV-2 transmission, particularly in low- and middle-income 
countries (LMICs). Antigen-detecting rapid diagnostic tests (Ag-
RDT) are inexpensive, with quick time to results, making them 
useful for detecting infectious cases. When used in conjunction with 
coherent policies for isolating infectious individuals, Ag-RDTs can 
help to reduce the spread of SARS-CoV-2.   

EXECUTIVE SUMMARY

UNDERSTANDING WHEN AND IN WHAT SETTINGS  
AG-RDTS CAN BEST BE UTILIZED TO MOST 

EFFECTIVELY REDUCE ONWARD TRANSMISSION  
IS CRITICAL FOR DECISION MAKING AND  

RESOURCE ALLOCATION EFFORTS.

The work described in this report aims to quantify the impact of 
SARS-CoV-2 Ag-RDT testing strategies on COVID-19 outcomes in a 
variety of subnational use cases and settings by combining outcome 
measures from different mathematical models. In doing so, we 
sought to provide a robust evidence-base for the use of Ag-RDTs 
in various settings and to quantify the value of expanded access 
to Ag-RDTs. The models used in this work evaluated different use 
cases, including (a) community testing, (b) mass gatherings, (c) K-12 
schools, (d) universities, (e) border crossings, and (f) testing to exit 
quarantine.

THE RESULTS PRESENTED IN THIS REPORT CAN HELP 
TO GUIDE USE CASE-SPECIFIC IMPLEMENTATION OF 
AG-RDT TESTING AND CAN HELP SET EXPECTATIONS 
FOR THE USE CASE-SPECIFIC IMPACT OF DIFFERENT 

TESTING STRATEGIES.

Importantly, the results presented here do not quantify the 
potential impact of different testing strategies on community 
transmission outside of the specific use cases considered here 
and, because of differences in modelling frameworks among use 
cases, it is not possible to directly compare the utility of testing 
strategies among use cases. The next phase of this project will focus 
on using an agent-based modelling framework to directly investigate 
the impact of each use case on community transmission and the 
potential effectiveness of each of these use cases, alone and in 
combination, in different LMIC archetypes.

Across use cases, increasing test frequency (or more testing of a community) was associated with greater numbers  
of infections averted;

In general, testing strategies across most use cases were highly effective when the effective reproductive number at 
time t (Rt) and/or infection prevalence was low, in large part because testing and isolation help to keep prevalence low; 

Most use case testing strategies require more tests to avert infections when Rt and/or prevalence are low; this is due  
to the low probability of any individual testing positive in these situations.

The three main findings from 
this collected work are:
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Real-time reverse transcription polymerase chain reaction (RT-
PCR) tests and antigen-detecting rapid diagnostic tests (Ag-RDT) 
are the two key diagnostic modalities in the ‘test, trace, isolate and 
treat’ strategy of our pandemic response. RT-PCR tests remain 
the gold standard for COVID-19 diagnostic testing, with higher 
test sensitivity and specificity than Ag-RDTs, but they require 
laboratory infrastructure, sample transport, skilled personnel and can 
be plagued by long turnaround times. RT-PCR tests capture a large 
proportion of COVID-19 positive cases, making it the diagnostic most 
widely used to confirm COVID-19 infection. Ag-RDTs have lower test 
sensitivity (>80% in symptomatic individuals in the first 5-7 days of 
illness), but can be performed at point of care and provide results 
within 10–30 minutes. In many circumstances, speed and frequency 
of testing outweigh the benefits of higher test sensitivity and 
specificity provided by RT-PCR, making Ag-RDTs a valuable tool for 
triaging, case detection, outbreak investigation, and contact tracing. 

infection in this population, as they may be in the incubation stage. 
Beyond outbreak investigations, Ag-RDTs may be suitable for the 
identification of positive cases through widespread and routine 
community testing, especially at testing centers or care facilities 
where infection may be suspected.

As with all diagnostic tests, the utility of Ag-RDTs is largely dependent 
upon the positive and negative predictive value (PPV and NPV) of 
these tests in different settings. These metrics are heavily influenced 
by SARS-CoV-2 prevalence in the tested cohort. When SARS-CoV-2 
prevalence is high and Ag-RDTs have a high PPV, testing can identify 
positive cases to be moved to isolation and reduce the further 
epidemic transmission of the virus within the community, especially 
if there is an adequate number of contact tracing teams and 
associated personnel to implement testing campaigns. Conversely, 
under conditions of low SARS-CoV-2 prevalence and thus a higher 
NPV, it may be reasonable to implement Ag-RDT testing to rule out 
active infection in some settings.1 Importantly, Ag-RDTs show 
best testing performance in individuals in the infective stage 
of illness (within 5−7 days of symptom onset). In asymptomatic 
individuals, whose duration of illness cannot be measured, frequent 
testing has been proposed,2,3  although the risk of false positive test 
results in such low prevalence populations is higher. Taken together, 
Ag-RDTs, when accompanied by isolation following a positive test, 
have the potential  of being especially useful for the control and 
mitigation of the COVID-19 pandemic, especially in limited resource 
settings. However, further evidence is needed to identify and clearly 
define the use cases where Ag-RDTs might have the greatest impact, 
and why, for these settings.  

Different use settings are likely to require different diagnostic testing 
strategies to most efficiently reduce transmission. Identifying the 
use cases where Ag-RDTs can best be utilized to create the largest 
reductions in onward transmission is important for decision making 
and resource allocation efforts, particularly during heightened 
demand, when epidemic transmission is high.  

DIAGNOSTIC TESTING FOR SARS-COV-2 REMAINS 
AN EFFECTIVE PANDEMIC RESPONSE TOOL BY 
ALLOWING FOR THE TIMELY DETECTION AND 

ISOLATION OF INFECTIOUS CASES, THUS REDUCING 
THE POTENTIAL FOR FURTHER TRANSMISSION.

THIS STUDY AIMS TO QUANTIFY THE IMPACT OF 
SARS-COV-2 AG-RDT TESTING STRATEGIES ON 

COVID-19 OUTCOMES IN VARIABLE SUBNATIONAL 
USE CASES AND SETTINGS, BY COMBINING 

OUTCOME MEASURES FROM MULTIPLE MODELS. 
IN DOING SO, WE SEEK TO PROVIDE A ROBUST 
EVIDENCE BASE FOR THE USE OF AG-RDTS IN 

VARIOUS LMIC SETTINGS AND TO QUANTIFY THE 
VALUE OF EXPANDED ACCESS TO AG-RDTS.

AS A SURVEILLANCE AND CONTROL STRATEGY, 
REDUCING POPULATION-LEVEL SPREAD REQUIRES 

GREATER ACCESSIBILITY AND FASTER RESULT 
TURNAROUND TIME TO IDENTIFY CASES WHILE  

THEY ARE STILL INFECTIOUS.

Ag-RDTs are low-cost and can be utilized for the scale-up of 
diagnostic testing in limited resource settings − where RT-
PCR testing capacity is somewhat circumscribed − and to support 
surveillance or response efforts where RT-PCR testing is readily 
accessible. Ag-RDTs can be deployed in outbreak investigations to 
quickly identify positive cases and break the chain of transmission, 
and to understand the extent of the outbreak in intra-community 
settings, such as health care facilities, schools or the workplace. This 
is beneficial in settings where access to RT-PCR testing is limited, 
but also in cases where the turnaround time of available tests is not 
rapid enough to support outbreak response decisions. Ag-RDTs can 
also be useful for contact tracing, where positive symptomatic and 
asymptomatic contacts can be identified and isolated; however, a 
negative Ag-RDT result is not currently recommended to rule out 

BACKGROUND
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This report draws on the input of seven research groups who 
each developed mathematical models to assess the potential 
impact of Ag-RDT testing for SARS-CoV-2 infection: Boston 
University, London School of Hygiene and Tropical Medicine, Institute 
for Disease Modeling, Harvard T.H. Chan School of Public Health, 
New York University Grossman School of Medicine, Amsterdam 
University Medical Center, Agency for Science, Technology, and 
Research (A*STAR Singapore), and the South African COVID Modeling 
Consortium (South African Centre for Epidemiological Modelling and 
Analysis (SACEMA), University of Cape Town, Health Economics and 
Epidemiology Research Office, and the South African Institute for 
Communicable Diseases). All collaborators agreed to provide output 
from their models and make adjustments where relevant or required.

Initially, we set out to conduct a multi-model comparison from each 
of the groups across various use cases: (a) community testing, 
(b) mass gatherings, (c) K-12 schools, (d) universities, (e) border 
crossings, and (f) testing to exit quarantine. Given the limited number 
of modeling groups that could effectively adapt their models to 
assess a given use case, all but one (border crossings) showed the 
results from a single modeling group.

Each modeling group was asked to run a set of scenarios. For 
models with longitudinal output, output was requested over a 90-day 
simulation period (K-12 schools (kindergarden to 12th grade/high 
school, or primary and secondary education), and universities). The 
remainder of the use cases provided output for between 1−365 days 
depending on the use case (community testing, mass gatherings, 
border crossings, testing to exit quarantine). The parameters that 
were varied were use-case dependent, but most generally included 
varying the epidemic conditions (the effective reproductive number 
at time t (Rt), and the current prevalence of COVID-19 in the target 
population), and the frequency of testing for asymptomatic infections 
(testing in the community, K-12 schools, and universities). Rt and 
prevalence was varied to assess the impact and efficiency of 
testing depending on the specific local stage of the epidemic; for 
example, high Rt and low prevalence would suggest the start of a 
new epidemic wave. 

Test specificity, or the ability of the test to correctly identify those 
without the disease (true negative rate), affects the true positive rate 
(also known as the positive predictive value [PPV]). Prevalence also 
affects PPV; in general, greater specificity and greater prevalence 
increases PPV (fewer false positives). Thus, the utility of the Ag-
RDT depends on SARS-CoV-2 prevalence and test specificity. 
Where SARS-CoV-2 prevalence is greater and Ag-RDTs have a high 
PPV, testing can identify positive cases that can be moved to isolation 
and reduce the further transmission of the virus. Whereas under 
conditions of low SARS-CoV-2 prevalence and a lower PPV, there 

will be increased false positive results, which increase the number 
of days spent unnecessarily isolating, with possible economic 
consequences. Across use cases, mean sensitivity ranged 
from 80% to 85%, or was conditional on intra-host viral load 
dynamics. Specific assumptions about sensitivity and specify are 
outlined in the Appendix. Future work will consider the use cases 
at very low SARS-CoV-2 prevalence to determine tradeoffs between 
further epidemic control (reduction in cases) and economic costs 
(isolation of false positive individuals).

To calculate these outcomes, we determined the number of Ag-RDT 
COVID-19 tests conducted, and the number of COVID-19 infections 
for each scenario, where COVID-19 infections were defined as all 
diagnosed and undiagnosed asymptomatic, pre-symptomatic, mild, 
and severe infections, and the number of COVID-19 infections for the 
base case scenarios. The exiting quarantine use case used a modified 
version of these outcomes (infection days instead of infections).

The original ambition of the modeling consortium was to 
examine the impact of each of the use cases on community 
transmission more broadly. It is important to note that the only 
use case and model that could assess community impact was the 
community testing use case. Direct comparisons on the utility of each 
use case were difficult to assess through this report alone. The next 
phase of this work will involve the further development and refinement 
of an agent-based model parameterized to multiple LMIC archetypes 
to integrate all use cases simultaneously in differing proportionalities. 

Therefore, within this report, each of the use cases is accompanied by 
a description of the methods of the modeling approach (with addition-
al details in the Appendix) followed by the modeling results. The full 
synthesis of all results, as well as uncertainty estimates across all use 
cases, can be found in sections 4 and 5 of the report. A glossary of 
commonly used modeling terms are is found at the end of this report.

1. the percent and number of infections averted (or percent 
of infectious days averted or the number of infectious imports 
averted per 100,000 travelers, depending on respective use 
case), and

2. the number of tests required to avert one infection (or avert 
one infectious day or infectious import per 100,000 travelers, 
depending on respective use case).

Across all use cases, we calculated two outcomes 
relative to the status quo in each use case: 

METHODS: APPROACH TO THE MODELING CONSORTIUM
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USE CASES

 1.  COMMUNITY TESTING

BACKGROUND  

Community-level testing of COVID-19, defined as random mass 
testing of the population, has mostly relied on RT-PCR testing, 
which is expensive, time consuming and requires a robust 
laboratory infrastructure. In settings where testing capacity 
is limited, Ag-RDTs can be used to increase testing capacity. 
There has been incomplete guidance on the use of Ag-RDTs for 
widespread community testing in the general population, as current 
WHO guidance focuses on symptomatic testing of individuals 
meeting COVID-19 case definition,4 and Ag-RDTs in low prevalence 
populations have greater risk of giving false positive results. Even so, 
for routine surveillance purposes, the speed and frequency of Ag-
RDT testing may still potentially outweigh the benefits of higher 
test sensitivity and specificity provided by RT-PCR. 

APPROACH  

The National COVID-19 Epi Model (NCEM), a stochastic compartmental 
transmission model of COVID-19 transmission dynamics in nine 
provinces in South Africa, was modified to quantify the likely 
impact of different COVID-19 Ag-RDT strategies on disease 
transmission in the general population and communities. The model 
structure, parameters, and assumptions can be found in greater 
detail online.5 To adapt this model, additional transitions were added, 
defined as the flow between compartments, where individuals can 
move when diagnosed with COVID-19 and subsequently isolated, 
reducing disease transmission in the general population. Figure 1 
shows the original NCEM versus the adapted NCEM. The model 
assumes that diagnosed COVID-19 infections will be isolated with 
differential isolation adherence and a consequent reduction in 
number of contacts (isolation effectiveness). Additionally, the model 
assumes that all COVID-19 hospitalizations are isolated, and thus do 
not contribute to the force of infection. The total modeled population 
size of South Africa was 58.8 million, and the simulation was 
run for 365 days. More information on assumptions and parameters 
can be found in the Appendix.

Figure 1. (A) The original NCEM model   
 (B) Adapted NCEM model incorporating additional compartments for diagnosed mild infection, severe infection, and hospitalization. 
Compartments: S–Susceptibles, E–Exposed, IA–Asymptomatic infections, IP–Presymptomatic infections, IM–Mild infections, IS–Severe infections, 
H1–non-ICU hospitalizations, H2–ICU hospitalizations, ICU1–ICU deaths, ICU2–ICU recovereds, H3–post-ICU hospitalizations, R–recovered, D–deaths, 
I+–Asymptomatic/presymptomatic/mild infections diagnosed, IS+–Severe infections diagnosed, H+–Hospitalizations diagnosed
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We focused our analyses on two model outputs: 1) the 
percentage of infections averted, and 2) the number of tests 
required to avert one infection. We also assessed two secondary 
outcomes, total infections averted and total infections. In this use 
case, we assume a base case Ag-RDT testing scenario in which 
there is no large-scale asymptomatic community testing, and we 
only test 15% of symptomatic mild cases, 50% of severe cases, and 
100% of hospitalized cases. We assessed the effect of additional 
percentages of Ag-RDT testing in the whole population, on top of the 
base case testing proportions. 

We also varied several epidemic parameters and SARS-CoV-2 
diagnostic testing factors to assess the utility of Ag-RDT in 
various epidemic scenarios. These include: frequency of testing, 
Rt, COVID-19 prevalence, and isolation effectiveness (reduction in 
the force of infection when diagnosed) (Table 1). To be realistic, the 
model does not assume a contact tracing infrastructure, given the 
substantial human resource burden.  

Additionally, we have assumed three different levels of 
adherence to isolation (isolation effectiveness) given the fact 
that it may be difficult for some people to isolate (20% reduction 
in community contacts, 50%, and 80%). The sensitivity of the 
diagnostic tests for both symptomatic and asymptomatic COVID-19 
cases was assumed to be 85% (80% to 90%), and the relative 
transmissibility of asymptomatic and pre-symptomatic cases 
compared to symptomatic cases was 0.75 (0.70 to 0.80).

Parameter Values

Effective reproductive number 0.8, 1.2, 2.0

Prevalence of COVID-19 0.1%, 1%

Proportion of community tested 2.5%, 5%, 20%, 50%, 90%

Frequency of community testing Once/two weeks, once/week, twice/week

Reduction in number of contacts post positive test 20%, 50%, 80%

Table 1. Parameters varied for each community testing use case scenario

RESULTS  

Greater percent of infections averted  was generally associated 
with higher proportion tested and increased frequency of Ag-
RDT testing for most scenarios (Figure 2). There is also a greater 
percentage of infections averted when the effective reproductive 
number is lower and prevalence of disease is lower. 

Greater frequency of testing and greater proportion of 
individuals tested lead to more tests per averted infection (Figure 3). 
Fewer tests per averted infection are needed when there is greater 
isolation effectiveness (defined as a reduction in number of contacts 
when diagnosed positive). 

In addition, there were more tests per averted infection when Rt 
and prevalence were high. The model assumed no contact tracing 
in this use case. However, the implementation of contact tracing 
in addition to widespread community testing would have further 
improved the effectiveness of asymptomatic community testing, if 
human resources were available and trained to conduct this type of 
large-scale public health program.

The number of infections averted followed the same trend as 
percentage infections avert (Figure 4), where greater proportion 
of infection averted was generally associated with more widespread 
and greater frequency of Ag-RDT testing, and greater isolation 
effectiveness substantially increasing the total infections averted. 
The base case total number of infections (if we only tested 15% of 
symptomatic infections, 50% of severe cases, and all hospitalized 
cases) ranged from 39.9 to 53.1 million, or 68% to 90% of the 
population depending on the epidemic parameters. 

Figure 5 5 shows the total infections in millions for each scenario, 
as well as the base case scenarios, where we see widespread, 
frequent, and effective testing to be related to a lower number 
of total infections across all levels of Rt and prevalence. It is 
important to note, that to enable comparison to other use-cases, we 
have had to make non-dynamic assumptions about each scenario 
(e.g. artificially setting Rt and prevalence). In reality, these processes 
are dynamic, and a dynamic evaluation of each strategy across 
varying epidemic trajectories will be required in the next phase of 
the modeling consortium work.
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Figure 2. Percent of infections averted with varying frequency of testing, effective reproductive number (Rt), COVID-19 prevalence,  
 and isolation effectiveness (reduction in the force of infection when diagnosed) for a community testing strategy at various  
 proportions of the community tested.
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Figure 3. Test per averted infection with varying frequency of testing, effective reproductive number (Rt), COVID-19 prevalence,  
 and isolation effectiveness (reduction in the force of infection when diagnosed) for a community testing strategy at various  
 proportions of the community tested.
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Figure 4. Total infections averted with varying frequency of testing, effective reproductive number (Rt), COVID-19 prevalence,  
 and isolation effectiveness (reduction in the force of infection when diagnosed) for a community testing strategy at various  
 proportions of the community tested.
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Figure 5. Total infections with varying frequency of testing, effective reproductive number (Rt), COVID-19 prevalence,  
 and isolation effectiveness (reduction in the force of infection when diagnosed) for a community testing strategy at various  
 proportions of the community tested (total modeled population size of South Africa = 58.8million).

50 1040 30 20

TOTAL INFECTIONS 
IN MILLIONS

10



However, even with frequent and widespread testing, there would be 
a limited percentage of infections averted when there is no reduction 
in the number of contacts post-diagnosis, and even becomes 
harmful, increasing the number of tests needed to avert an infection.

Importantly, LMIC health systems are unlikely to be able to scale 
up COVID-19 testing to a large percentage of the population. 
Averting a substantial number of cases through asymptomatic 

community testing alone in LMICs would require more tests per 
week than have been purchased through the ACT-A diagnostics 
pillar to date. To achieve the most substantial reductions in disease 
burden (Figure 4) for Nigeria, for example, would require ~1.4 billion 
Ag-RDTs per month. Even in the most modest scenario considered 
in Figure 4 – testing 1% of the population once every two weeks – 
would require ~4 million Ag-RDTs per month for Nigeria alone, with 
negligible reductions in infections.  

So, while mass asymptomatic community testing (accompanied by 
viable mechanisms of isolation) can facilitate disease control, the 
associated costs make it feasible only in small, defined settings.
Additional cost-effectiveness studies on these findings 
need to be conducted to identify key candidate settings for 
asymptomatic community testing.

IN SUMMARY, A GREATER PERCENTAGE  
OF INFECTIONS ARE AVERTED WITH MORE FREQUENT 

AND MORE WIDESPREAD COMMUNITY-WIDE  
AG-RDT COVID-19 TESTING ACROSS ALL  

EPIDEMIC SCENARIOS.

 2.  MASS GATHERINGS

BACKGROUND  

WHO defines mass gatherings as any gatherings for which the 
number of people attending are enough to place additional 
strain on planning and response resources where these events 
take place. What constitutes a mass gathering is therefore context-
specific. During the current pandemic, mass gatherings have 
been a contentious point in policies aimed at reducing the spread 
of COVID-19, with restrictions placed on the maximum number 
of people allowed to attend church services, funerals, concerts, 
sporting events, graduations, etc. Mass gatherings can either be 
once-off (e.g. concerts) or recurring (church services) and targeting 
these events for Ag-RDT testing prior to entry may reduce the 
likelihood of super-spreader events while being more tolerable to 
event attendees than other testing strategies aimed at reducing the 
spread of COVID-19, such as mask-wearing or lockdowns.

individuals. Using this information, they developed a probabilistic 
model to estimate how many infectious individuals would be missed 
by a test administered between 1 and 3 days prior to the mass 
gathering. The use case presented here made use of an online 
interactive version of the model created by the researchers.

The analyses presented here focused on varying two key 
parameters: 1) the prevalence of COVID-19 in the community at 
the time of the event, and 2) the duration of the event (Table 2). 
Additional parameter assumptions are outlined in the Appendix. 
The duration of the event was a key consideration given that the 
initial rate of viral increase is so rapid that even for events of just a 
few hours long, a person infected with SARS-CoV-2 could become 
infectious during the event. Other non-varied parameters included 
variable “effective sensitivity” based on the time of testing prior to 
the event, with a 99% sensitivity assumption on Ag-RDT tests used 
when the infectiousness threshold was Ct value 30, which goes 
down to 76% when the test is administered 2 days prior to the event.

To explore the relationship between prevalence, event duration 
and time of testing, we report all scenarios per 10,000 people 
attending a mass gathering, thereby accounting either for a singular 
event with 10,000 people or multiple smaller events that add up to 
10,000 attendees in total. The model was not intended to estimate 
transmission events at the occasion itself, but rather the number 
of infectious individuals who would be successfully screened from 
attending the event.  We then estimated the number of infectious 
attendees detected prior to the event if attendees were asked to test 
3 days prior, 2 days prior, 1 day prior or day of the event.

APPROACH  

The model for this use case was developed at the Harvard 
University T.H. Chan School of Public Health to estimate the 
number of individuals who would be expected to attend a 
mass gathering while infected. To estimate how an individual’s 
detectability and infectiousness change over time, the authors used 
prospective longitudinal SARS-CoV-2 testing data collected among 
players, staff, and vendors participating in the US National Basketball 
Association’s (NBA) occupational health programme.6 They used a 
Bayesian statistical model to estimate the peak Ct value, the time 
from first detectability to the peak Ct value, and the time from 
the peak Ct value to cessation of acute viral shedding for infected 
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Parameter Values

Prevalence of COVID-19 0.1%, 1%

Duration of event 1hrs, 3hrs, 5hrs

Timing of test 3, 2, or 1 day prior to event, day of event

Table 2. Parameters varied for each mass gathering use case scenario

RESULTS  

Higher prevalence, longer event duration and more time elapsed 
between testing and the mass gathering were associated with 
higher numbers of infectious individuals at mass gatherings 
(Figure 6). While higher prevalence was associated with a higher 
absolute number of infectious individuals detected and prevented 
from attending the mass gathering, the percentage of infectious 
individuals detected through testing remained stable over different 
prevalence rates (Figure 7). 

Event duration slightly increased the number of individuals in the 
population that were or would become infectious during the event 
if tested 3 days prior to the event from 40.6 to 42.0 per 10,000 
population, while decreasing the infectious individuals prevented 
from attending by testing from 62.8% to 59.3%. Testing closer to the 
time of the event was associated with a higher number of infectious 
individuals detected through testing, though testing 3 days prior 
still averted more than 60% of infections in all scenarios, except for 
events of 5-hour duration with 1% population prevalence. 

There are situations in which testing prior to the event may be 
considered advantageous as compared to testing at an event itself, 
such as increased feasibility, preventing people gathering to access 
testing just prior to the mass gathering. These considerations need 
to be weighed with the likelihood of reduced efficacy of Ag-RDT 
testing as a transmission mitigation strategy.  

Some limitations should be considered when interpreting 
these findings. There is a singular input for the prevalence in 
the population, which could under- or overestimate the number 
of infectious attendees detected if participants travel from areas 
with infection prevalence that is substantially different than the 
assumed community prevalence. It should also be considered that 
people attending mass gatherings may be different from the general 
population in a way that affects their risk of exposure to COVID-19 
prior to the mass gathering taking place. 

Figure 6. Total infectious individuals at event per 10,000 population 
 attending mass gatherings, after testing, varied by time  
 between testing and time of the event, COVID prevalence,  
 and duration of the event
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Figure 7. Total infectious individuals detected during testing prior to 
 mass gatherings per 10,000 population, varied by time  
 between testing and time of the event, COVID prevalence,  
 and duration of the event
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The results presented here do not include the potentially 
increased risk of exposure in the time leading up to or 
immediately after the event. Similarly, these results do not offer 
guidance on limiting the number of attendees to mass gatherings. 
Finally, this model does not capture the dynamics of different sized 
events with different parameters that could modulate transmission 
(such as ventilation, masks, ability to social distance, etc.). Future 
work should aim to model different parameters surrounding mass 
gatherings of different sizes and then calculate the added value of 
rapid antigen testing as an additional mitigation strategy at one of 
these events, and compare these results to effectiveness of existing 
interventions that limit the capacity of the events. Depending on the 
type of mass gathering considered and the frequency with which 
they occur, mass gatherings as an intervention touchpoint may 
overlap with community testing to some extent (e.g. through testing 
at places of worship).

IN SUMMARY, THE RESULTS SUGGEST THAT USING 
AG-RDTS TO SCREEN MASS GATHERING ATTENDEES 

THE DAY BEFORE OR THE DAY OF AN EVENT 
OFFERS THE GREATEST REDUCTIONS IN DISEASE 

TRANSMISSION AT MASS GATHERINGS, COMPARED 
WITH TESTING AT EARLIER TIME POINTS.

Despite the need for substantially more investigation to interrogate 
the wide variation of potential mass gathering settings, our findings 
give greater evidence to the value of Ag-RDT in mass gathering 
situations, as self-test Ag-RDT can return same day testing results, 
something which is not as feasible with RT-PCR.

 3.  K-12 SCHOOLS

BACKGROUND  

Schools are important points of in-person gathering in most 
communities. Across the world, primary and secondary schools 
have been closed in response to the COVID-19 pandemic. During the 
first wave of global infection, children were less likely to contract, 
transmit, or show symptoms of COVID-19.7 School districts that 
practiced COVID-19 precautions such as mask-wearing, physical 
distancing, symptom screening, handwashing, and indoor air 
ventilation were observed to have SARS-CoV-2 prevalence no 
greater than their surrounding communities.8 

However, more transmissible SARS-CoV-2 variants have increased 
the likelihood of transmission in schools.9 COVID-19 diagnostic 
testing could serve as an effective way to reopen schools while 
preventing SARS-CoV-2 outbreaks. Testing could be implemented 
with COVID-19 Ag-RDTs, which provide rapid results and are feasible 
to implement in a school-age population and do not require additional 
laboratory infrastructure. Here, an Ag-RDT screening strategy and its 
corresponding outcome was modeled for teachers with or without 
the inclusion of primary and secondary pupils, using 2019 school 
attendance data from Malawi. 

APPROACH  

A mathematical model was originally developed by researchers 
at New York University Grossman School of Medicine to evaluate 
the impact that various mitigation measures, including testing, 
would have on the transmission of SARS-CoV-2 in New York 
City Schools. Information about the model was posted on medRxiv, 
and updated code (programmed in R) for the analysis of this use 
case has been posted on GitHub.10,11 This model is a simulation 
model of classroom dynamics and probability of onward SARS-
CoV-2 transmission, parameterized using number of children per 
classroom and ratio of pupils to teachers. 

The model was adapted for the purposes of this use case and re-
parameterized to reflect school settings in Malawi. The updated 
model simulations represent 299 individual schools (representing 
1/5th the total number of schools in Malawi), using Malawian school 
population sizes and student-teacher ratios (Table 3). The entire set 
of 299 schools was run 50 times for each scenario. The mean 
and bootstrapped 95% confidence interval is reported below for 
each scenario. 

Population Number per school Total in school simulations

Primary schools (pupils age 5-12) 757 917,955

Secondary schools (pupils age 13-18) 701 196,560

Teachers 11 (Primary), 19 (Secondary) 18,685

Table 3. Total denominator population of each scenario (representative of 1/5th of all schools in Malawi)12–16
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Given the nature of questions surrounding testing in schools 
specifically, multiple testing scenarios were evaluated: testing 
teachers only, testing teachers and secondary school pupils, testing 
teachers and primary school pupils, and testing teachers and all 
pupils. All scenarios included symtomatic testing of all teachers and 
pupils in addition to assigned routine testing. These testing scenarios 
were then further varied by different testing frequencies and under 
different epidemic conditions (Table 4). 

All scenarios were compared to counterfactual base cases with the 
same epidemic parameters and symtomatic testing for teachers 
and pupils. We also compared scenarios to a counterfactual base 
case with no testing in the event that symptomatic testing is not 
widely available (Appendix Figures 1 to 4). Further, there remain 
concerns at both national and local levels about the need to close 
a whole school or multiple classrooms following a positive test, 
causing hesitancy to implement testing within schools, as well as 
concerns about cost. We have therefore assumed no classroom or 

Parameter Values evaluated

Effective reproductive number 0.8; 1.2; 2.0

Prevalence of COVID-19 0.1%; 1%

Testing scenario
Testing only teachers; testing teachers and 5-12 year olds; testing 
teachers and 13-18 year olds; testing all teachers and all pupils

Testing frequency Once/two weeks; once/week; twice/week

Table 4. Parameters varied for each K-12 use case scenario 

RESULTS  

Amongst the four testing scenarios evaluated, the most 
effective strategy at reducing the number of SARS-CoV-2 
infections among pupils and teachers was testing all teachers 
plus all pupils, followed by testing all teachers plus secondary 
school pupils, testing all teachers plus primary school pupils, and 
finally only testing all teachers (Figure 8).

school quarantine following a positive test. Only the person who 
tested positive is assumed to stay home until no longer infectious. 

In these simulations, primary school pupils were 43% as susceptible 
as adults and 63% as infectious as adults.17 No difference in 
susceptibility/infectiousness for secondary school pupils and adults 
was assumed. The sensitivity of the AgRDT was assumed to be 85%.
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Figure 8. Percent of infections (amongst all teachers and pupils) averted compared to the same epidemic  
 scenario with only symptomatic testing in schools; varied by targeted testing population,  
 COVID prevalence, effective reproductive number and frequency of testing.
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Maximum impact of the school testing strategies (particularly for the 
testing of all teachers and all pupils, and testing of all teachers and 
secondary school pupils) is achieved when SARS-CoV-2 prevalence 
is low and Rt is high- such as at the start of a new wave (83%-94% 
infections averted). This illustrates the utility of surveillance for being 
able to understand the current prevalence and Rt of SARS-CoV-2 
to be able to rapidly deploy effective mitigation measures, such as 
routine testing in schools.

Unsurprisingly, an increasing frequency of testing also results 
in an increased proportion of infections averted. However, this 
comes at the price of efficiency – the greater the frequency of testing 
the greater the number of tests required to prevent one infection 
(Figure 9). 

While testing all pupils plus all teachers is the most effective 
scenario in reducing the number of new infections, testing all 
teachers and all pupils ages 13-18 was the most efficient strategy 
in terms of the number of tests required to prevent a new infection 
across the majority of epidemic conditions and testing frequencies. 
This is, however, likely due to the underlying assumption that young 
children are less likely to be infectious as compared to older children 
and adults – an assumption that has evolved with new currently 
circulating variants.  

Figures 10 and 11 represent the total number of infections during 
the 90-day time period (Figure 10, with a total denominator reported 
in Table 3), and total number of infections averted (Figure 11). When 
the scenarios were compared to the base case scenario of no testing, 
all trends were generally the same, but with a lower percent and 
fewer total infections averted, and more tests per averted infection 
(Appendix Figures 1 to 4).
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Figure 9. Number of tests required per infection averted compared to the same epidemic scenario with only 
 symptomatic testing in schools; varied by targeted testing population, COVID prevalence, effective  
 reproductive number and frequency of testing.
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FURTHER CONSIDERATIONS  

Feasibility of such a scenario and resources required to 
implement depends on country-level guidance and policy. 
Having such a program effective at scale requires some degree of 
self-testing or lay-person administered Ag-RDT. Furthermore, the 
total size of the school-going population would dictate the total 
resources required of such a program, plus the potential community-
level benefit (which was not modeled here). 

The modeling presented here reflects the school system and age 
distribution and student-teacher ratio of Malawi. Approximately 
31% of people living in Malawi are of school-going age, exemplifying 
both the potential impact that testing in schools could have more 
generally, but also the level of financial/resource investment required 
to execute an effective school testing strategy. Moreover, we 
assumed that no additional non-pharmaceutical interventions are 
conducted in the base case (no intervention) scenario, which may 
not be accurate given the extent of the COVID-19 pandemic. 

Future work should assess further impact of K-12 school-based 
testing on community transmission and cost-effectiveness of 
investing in school-based testing as a primary mechanism for the 
prevention of SARS-CoV-2 transmission in the broader community 
across a number of country archetypes, and compared with other 
testing strategies.  

Also, the assumptions made here about reduced transmissibility 
of SARS-CoV-2 might not hold true for emerging variants of 
concern and further analyses are required to evaluate the impact of 
differences in virus transmissibility among K-12 school populations. 
Finally, to enable some level of comparison to other use-cases, we 
have had to make non-dynamic assumptions about each scenario 
(e.g. artificially setting Rt and prevalence). In reality, these processes 
are dynamic, and a dynamic evaluation of each strategy across 
varying epidemic trajectories will be required.
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Figure 10. Total number of infections amongst pupils and teachers (no testing = only symptomatic testing),  
 varied by targeted testing population, COVID prevalence, effective reproductive number and frequency of testing.
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Figure 11. Total number of infections averted amongst pupils and teachers compared to the same epidemic  
 scenario with only symptomatic testing in schools, varied by targeted testing population,  
 COVID prevalence, effective reproductive number and frequency of testing.
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 4.  UNIVERSITIES

BACKGROUND  

The COVID-19 pandemic led to the closure of schools and universities 
across the globe for in-person learning. University campuses are 
potential hotpots for COVID-19 transmission, as students spend 
long periods of time in classrooms, may reside in dormitories or 
shared housing and maintain a range of social contacts.18 This 
puts both the university population and the surrounding community 
at greater risk of COVID-19 infection. However, the closing of 
universities had negative consequences on both a student’s ability 
to learn and on universities’ financial stability. In the Fall of 2020 
in the United States, many universities attempted to reopen with 
regular COVID-19 reverse transcriptase PCR (RT-PCR) surveillance 
of students, faculty, and staff to mitigate on-campus transmission.19 

An RT-PCR testing strategy can be costly and therefore not feasible 
at universities with limited financial resources or lack of laboratory 
capacity, or be hindered by long turn-around-times in a setting 
where the timely identification of cases is important for success. 
Up to this point there has been little data or guidance on the use of 
COVID-19 rapid antigen diagnostic tests (Ag-RDTs) in the university 
setting. A successful Ag-RDT screening strategy could allow 
universities to safely resume in-person operations, especially 
in limited resource settings. An Ag-RDT screening strategy was 
modelled in a university setting under varying epidemic conditions 
by applying a previously developed agent-based network model to a 
sample university population.

performance of Ag-RDTs in the university setting under differing 
epidemic conditions and testing frequencies. Daily case incidence 
and tests used were model outputs of interest in this analysis.

Model simulations were run using the variables shown in Table 5, 
representing a total of 18 distinct scenarios. Daily imported 
infections represented the level of COVID-19 community prevalence 
at either 0.1% or 1.0%. To calculate the number of daily imported 
infections the university population was multiplied by prevalence 
level and divided by the average infectious period of SARS-CoV-2.21 

Effective reproductive numbers (Rt) were reflected in the model by 
incorporating a series of intervention methods, including – classroom 
level interventions (masks, social distancing, and class cohorts), 
reduced housing density or contact tracing. Rapid antigen testing 
was implemented for every member of the population either twice 
weekly, once weekly or every other week. Simulations were run 
with Python 3.8.3 through the Boston University Shared Computing 
Cluster. Each simulation was run for 90 days, 1000 times. Means 
and 95% confidence intervals for daily incident infections and daily 
tests were computed using SAS 9.4. 

Table 5. Parameters varied for each university use case scenario 

Parameter Values evaluated

Effective Reproductive Number (Rt) 0.8; 1.2; 2.0

Daily Imported Infections into the university 0.1% or 1%

Test Frequency Once/two weeks; once/week; twice/week

APPROACH  

The university model was originally developed by a team 
of researchers from Boston University to inform COVID-19 
interventions necessary for their Fall 2020 reopening strategy.20 

The model utilizes Covasim, a stochastic agent-based simulator 
developed by the Institute for Disease Modeling (IDM). The model 
used predefined classroom and household network structures from 
a sample university population of 3,681 faculty, staff, and students 
to project COVID-19 cases and outcomes within the population. The 
model was adapted for an Ag-RDT screening strategy by adjusting 
test sensitivity to 85% and turn-around-time for test results to 
0 days. Several model parameters were varied to observe the 

RESULTS  

Ag-RDT screening in the university setting was most effective 
under low levels of Rt and low community prevalence. At an Rt of 
0.8 and community prevalence of 0.1%, any Ag-RDT testing frequency 
prevented most infections (>90%), represented as a percentage of 
infections averted as compared to a baseline scenario with no testing 
(Figure 12). Under these conditions, testing once every two weeks 
of students, faculty, and staff required the fewest number of Ag-RDT 
tests to prevent one infection while preventing a comparable number 
of infections to weekly or twice weekly testing (Figure 13). The 
absolute number of infections and infections averted that correspond 
to the percentages in Figure 12 are illustrated in Figures 14 and 15. 
As the Rt and community prevalence increase, there is a significant 
reduction in the percentage of infections averted. This is seen most 
markedly at an Rt of 1.2 and community prevalence level of 1%, with 
the percent of infections averted decreasing from 87% to 42% under 
twice weekly testing, as compared to a prevalence level of 0.1%.  
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When the Rt is 2 or higher, an increase in community prevalence is 
unlikely to make a significant difference in a population this small. 
When the Rt and prevalence are high, twice weekly testing prevents 
the greatest number of infections, but with significantly more tests 
necessary per averted infection.

This university modelling analysis comes with important 
assumptions and limitations. First, the sample university 
population, while it was meant to imitate a real university population, 
was small in comparison to that of most universities, composed of 
only 3,681 people. In scenarios with a high Rt, the epidemic began 
to burn itself out within the 90-day simulation period. Simulations 
run with a larger population could lead to slightly different results. 
However, simulations were run 1000 times, providing narrow 95% 
confidence intervals (Section 4). Second, the university model 
assumed perfect compliance with isolation of confirmed positive 
cases, tracing, and quarantine of known contacts of the positive 
cases. In practice, compliance with these interventions will likely 
be less than 100%, which could lead to more onward transmission. 
Finally, this modelling analysis only observed the effectiveness of 
three different testing frequencies, while these are the most likely 
scenarios in a university setting, testing a student every time they 
came to campus, and therefore catching potential infections before 
onward transmission, could be a successful strategy. 

An Ag-RDT strategy at a university would be most effective and 
prevent the largest percentage of infections under any scenario 
when testing is conducted twice weekly. However, this frequency 
of testing also uses the greatest number of tests to prevent one 
infection. When the Rt is low, testing once weekly or biweekly would 
also be sufficient at preventing a comparable number of infections. 
In this analysis, Rt was represented in the model by implementing 
various mitigation measures, such as mask wearing, social 
distancing and contact tracing. The greatest number of infections can 
be prevented with the least number of tests when these additional 
measures are in place. In order for an Ag-RDT screening strategy 
to be successful and resource efficient at universities, additional 
intervention methods should be utilized as well.  

Figure 12. Percent of COVID-19 infections averted over a 90-day 
 period in the university setting when routinely testing  
 with Ag-RDTs, varied by COVID prevalence, effective  
 reproductive number and frequency of testing.
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Figure 14. Total number of COVID-19 infections under each testing 
 scenario compared to baseline with no testing, varied by  
 COVID-19 prevalence, effective reproductive number and  
 frequency of testing.
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Figure 13. Number of Ag-RDTs used per COVID-19 infection averted  
 over a 90-day period in the university setting, varied by  
 COVID prevalence, effective reproductive number and  
 frequency of testing.
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Figure 15. Total number of COVID-19 infections averted under each  
 testing scenario compared to a baseline scenario with no  
 testing, varied by COVID-19 prevalence, effective  
 reproductive number and frequency of testing.
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 5.  BORDER CROSSINGS

BACKGROUND  

Throughout the COVID-19 pandemic, countries have had varying 
success containing community transmission of SARS-CoV-2 
within their borders.22 Containing community transmission and 
preventing the importation of new infectious cases of SARS-
CoV-2 into a country remains crucial in areas without widespread 
access to vaccines, especially as more infectious variants of 
SARS-CoV-2 emerge. Effective travel related control measures 
are still needed to prevent the spread of these variants. Some 
countries have implemented entry requirements that international 
travelers provide proof of a negative COVID-19 reverse transcription 
polymerase chain reaction (RT-PCR) test within 72-hours of arrival. 

While this is possible to implement in many high-income countries 
and for air travel, this is frequently not possible at land-border 
crossings, particularly in low- and middle-income countries (LMICs), 
due to frequent cross-border travel and resource constraints. 
However, antigen rapid diagnostic tests (Ag-RDTs) are less costly 
than RT-PCR tests, do not require laboratory-based infrastructure, 
can be performed on-site by appropriately trained non-laboratory 
staff, and provide results within minutes, enabling decentralization 
of diagnostic testing.23 This use case investigates the use of Ag-
RDTs for screening at border crossings, with or without the 
need for a prior RT-PCR test.  

while the London School of Hygiene and Tropical Medicine (LSHTM) 
model used an individual-based simulation. Model parameters used 
can be seen in Table 6, and further model details can be found in the 
appendix or related publications or pre-prints. 

For 72-hour pre-PCR test sensitivity, the A*STAR model used a 
sensitivity distribution based on day of symptom onset at time 
of testing. The LSHTM model used viral load trajectories and 
corresponding probabilities based on the day of SARS-CoV-2 
exposure for both Ag-RDT sensitivity and 72-hour pre-PCR sensitivity. 
COVID-19 prevalence among cross-border travelers was varied from 
0.1%–2.0%. Eight distinct scenarios were run with each model. 
The key model output was undetected daily infections crossing 
the border per 100,000 travelers, which was used to compute the 
number of infectious imports averted per 100,000 travelers and 
the number of tests per infectious import averted. Scenarios that 
included a 72-hour pre-PCR test were considered to use two tests 
per traveler. These outputs were in comparison to baseline scenarios 
without testing.

Table 6. Key parameters varied for each border crossings use case scenario

Parameter BUSPH Model A*STAR Model LSHTM Model

COVID-19 Prevalence (%) 0.1, 0.5, 1.0, 2.0

Daily Travel Volume 100,000

Ag-RDT Sensitivity 85% 80% 85%

72-hour pre-PCR Sensitivity 88%24 * *

Testing scenario Ag-RDT on arrival alone; Ag-RDT on arrival plus a negative PCR test within 72 hours of travel

APPROACH  

Three different models were used to predict the effectiveness of 
an Ag-RDT screening strategy at border crossings with or without 
prior negative RT-PCR test results in a hypothetical daily travel 
population of 100,000 individuals. The Boston University School of 
Public Health (BUSPH) model is an algebraic algorithm with input 
derived from a compartmental transmission model, the Agency for 
Science Technology and Research (A*STAR) model is agent-based, 

RESULTS  

The LSHTM model predicted the most conservative outcome with 
the largest number of daily undetected infections crossing the border 
per 100,000 travelers under both testing strategies (Figure 16). The 
A*STAR model predicted the smallest difference with the addition 
of a 72-hour pre-PCR test, finding that most infections detected 
through pre-PCR testing would have been detected at the border 
with an Ag-RDT. The BUSPH and LSHTM models found a marked 
difference in the number of undetected infections with the addition 
of a 72-hour pre-travel RT-PCR requirement. The difference between 
the models may arise from A*STAR model’s assumption that the 
incubation period being largely undetectable by either Ag-RDT 
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or PCR and a different approach to test sensitivity based on 
thresholding a log normal distribution on each day of infection. In 
this scenario, the 80% sensitivity value is the relative cumulative 
sensitivity of Ag-RDT compare to PCR’s 100%.  

Among all three models, undetected infections increased as 
COVID-19 prevalence increased among cross-border travelers. 
The number of tests per averted infectious import had the opposite 
trend, requiring far more tests to capture one infection at low 
prevalence levels (Figure 17). The similarity between models can 
be more readily visualized in Figure 18, which shows the number 
of infectious imports averted per 100,000 travelers under the given 
testing strategy.  

The effectiveness of a border screening strategy for COVID-19 
is highly dependent on the prevalence of infection among 
travelers and the sensitivity of the tests. From a resource 
allocation perspective, a border screening strategy may be more 
beneficial when COVID-19 prevalence is high among travelers or at 
borders where the prevalence amongst travelers is greater.  

In addition, such a strategy will also be influenced by the volume of 
travel at a given border. Furthermore, the public health impact will 
be dependent on the status of the epidemic within a given country, 
as infectious imports will have a more consequential impact when 
community transmission is largely under control.25 This aspect 
remains to be investigated with the results presented here. 
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Figure 16. Daily undetected COVID-19 infections per 100,000 cross-border travelers under the given testing  
 regimen compared to a baseline scenario with no testing, by COVID prevalence and modeling group.
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Figure 17. Ag-RDT and/or RT-PCR tests administered per infectious import averted,  
 by COVID prevalence and modeling group.
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Figure 18. Infectious imports averted per 100,000 cross-border travelers (compared to no testing),  
 by COVID prevalence and modeling group.
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 6.  TESTING TO EXIT QUARANTINE AND ISOLATION FOLLOWING CONTACT TRACING 

BACKGROUND  

Quarantine and isolation are non-pharmaceutical interventions 
that can reduce the transmission of SARS-CoV-2. Most 
jurisdictions recommend a 14-day quarantine period following 
exposure to a known test-positive case, or following (international) 
travel, and a 10-day isolation period following a positive test.26,27 

However, quarantine and isolation can cause considerable economic 
and social costs at the individual and society level and recent 
evidence suggests that adherence to quarantine and isolation 
is poor, reducing its efficacy.28 Strategic testing, to allow for exit 
from quarantine or isolation early or daily testing in the absence of 
quarantine, can be used to reduce the economic and social costs 
as well as potentially improve quarantine and isolation adherence. 
Testing for this purpose using a RT-PCR testing strategy is costly 
and may not be a feasible option for low resource settings. The 
increasing availability of Ag-RDTs opens up this strategy to low 
resource settings. There is little data or guidance on the use of 
Ag-RDTs to shorten quarantine and isolation. This use case seeks 
to determine the optimal use of Ag-RDT testing strategies to reduce 
the burden of long quarantine or isolation post the infectious period.

APPROACH  

A quarantine and contact tracing model was originally developed 
by a team of researchers at the Centre of Mathematical Modelling 
of Infectious Diseases at the London School of Hygiene and 
Tropical Medicine. The model and all assumptions are published 
in a Lancet Public Health article.29 This model is an individual-based 
simulation of viral load trajectories. The probability of detection by 
Ag-RDT, as well as infectivity, is determined by the viral load at the 
time of testing. The model was adapted for the purposes of this 
use case to include (1) test-to-release from isolation n days after 
developing symptoms or a positive test and, (2) updated adherence 
values to take into account assumed enhanced adherence for less 
time spent in quarantine or isolation due to testing.

There are five main scenarios that differ depending on 
whether there was quarantine or no quarantine, no testing or 
test on release from quarantine or isolation, or, as an alternative 
to quarantine, daily testing on being traced as a contact (Table 7). 

A hypothetical cohort of 10,000 exposed contacts that should 
enter quarantine was modelled. Outputs included the number of 
infectious person days – total, spent in quarantine/isolation, or in the 
community, as well as the total number of Ag RDT tests used. Based 
on these outputs, the number of Ag RDT tests required to avert an 
infectious person-day in the community was calculated relative to 
a status quo of 14 days in quarantine and 10 days in isolation. The 
number of tests used in daily testing was calculated as the number 
of tests used up to and including the first positive test, at which point 
an individual begins isolation and ceases testing if completing the 
full 10 days, or has a test to release from isolation.

Model outputs were informed by adherence parameters which vary 
depending on the duration of quarantine without symptoms or the 
duration of isolation following a positive test or symptom onset. 
Results were adjusted linearly by day to take into account assumed 
enhanced adherence from a reduction in the quarantine/isolation 
requirement (Table 8).

Table 7. Main scenarios

Table 8. Adherence adjustments

Notes: End points for adherence in quarantine without symptoms, and isolation following development of symptoms taken from Steens et al. 2020.30 Adherence end point for 
adherence following a positive test result from ONS 2021.31 Adherence at day 3 assumed and adherence at days between start and end point calculated linearly.32

Scenario Description

1 Status quo quarantine (14 days)  
and isolation (10 days)

2 Test to release quarantine,  
status quo isolation

3 Test to release quarantine,  
test to release isolation

4 Daily testing quarantine,  
status quo isolation

5 Daily testing quarantine,  
test to release isolation

Days 3 5 7 10 14

Adherence in quarantine without symptoms 50% 46% 41% 37% 28%

Adherence in isolation following a positive test result 100% 97% 93% 86% /

Adherence in ‘isolation’ following development of symptoms 100% 93% 86% 71% /
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Model simulations were run in R using the parameters shown in 
Table 9, representing a total of 222 distinct scenarios. These sub-
scenarios differ by the assumption on underlying ‘prevalence’ of the 
exposed contacts (1%, 10%, or 50%), the delay to contact tracing (0 
or 3 days), the number of days spent in quarantine prior to an exit 
test (0, 3, 5, 7 or 10 days), the number of days of daily Ag-RDT testing 
if no quarantine is required (for 3, 5, 7 or 10 days), and the number 
of days spent in isolation prior to an exit test (3, 5, 7, or 10 days) or 
not. If the delay from an index case tracing exceeds or equals that of 
the quarantine duration, then quarantine does not occur, e.g. in the 
case of a 3-day delay and 3-day quarantine. Confidence intervals 
were calculated by bootstrapping for 10 secondary cases per index 
case (500 index cases per scenario) then up-scaling to the assumed 
prevalence/attack rate for 10,000 contacts.

Scenario
Exposed 

prevalence 
(%)

Delay to 
contact 

tracing (days)
Quarantine?

Days in 
quarantine

Quarantine 
exit testing

Daily testing 
in quarantine 

(days)

Days in 
isolation

Isolation 
exit 

testing

1 1,10,50 0,3 Y 14 None NA NA (10) NA (None)

2 1,10,50 0,3 Y 3,5,7,10
Test to 
release

NA 10 None

3 1,10,50 0,3 Y 3,5,7,10
Test to 
release

NA 3,5,7
Test to 
release

4 1,10,50 0,3 N 0 Daily 1,3,5,7,10 10 None

5 1,10,50 0,3 N 0 Daily 1,3,5,7,10 3,5,7
Test to 
release

Table 9. Key parameters. Within each scenario row, all combinations of the comma-separated values are considered.

RESULTS  

Any Ag-RDT testing strategy to exit quarantine or isolation early 
is very effective at reducing the number of infectious days in the 
community relative to the status quo due to the improvement in 
adherence to quarantine/isolation that we estimated (assuming 
the rates of adherence were similar to or better than those derived 
for the UK and Norway) (Figures 19A and 19B).30,31 Daily testing in 
the absence of quarantine for 5,7 or 10 days, and a test to release 
strategy for isolation from day 3 or 5 averted the most infectious 
person-days. With daily testing, the added benefit of 7 or 10 days of 
testing was negligible and largely negligible after 3 days when the 
delay to contact tracing was 3 days.

Figure 19. (A) Proportion infectious days averted (test to exit); (B) proportion infectious days averted (daily testing).
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Figures 20A and 20B reiterate the results from Figure 19. Daily 
testing in lieu of quarantine averts more infectious days than a test 
to release strategy. More infectious days are averted if there is zero 
delay to contact tracing. Daily testing in the absence of quarantine 
for 5,7 or 10 days, and a test to release strategy for isolation from 
day 3 or 5 averted the most infectious person-days. In addition, 
unsurprisingly, more infectious days are averted the higher the 
prevalence.

Across all scenarios, low exposed contact prevalence was 
associated with more tests required to avert an infectious 
person-day in the community (Figure 21 A and B). This is because 
an Ag-RDT testing strategy for low versus high prevalence ‘captures’ 
less infectious days in the community for the same number of tests. 
Regardless of prevalence, test to release strategies for both 
quarantine and isolation were the most efficient at averting 
infectious person-days (Figure 21 A). In general, the longer the 
required time period in isolation, the more tests required to avert 
one infectious person-day relative to the status quo. Similarly, in 
general the longer the required time period for either testing daily 
in the absence of quarantine, or the number of required quarantine 
days prior to a test to release, was associated with more tests per 
infectious person-day averted. Longer delays in contact tracing 
were also associated with more tests required to avert an infectious 
person-day, except in the first 3 days of daily testing following a 
3-day delay.

Daily testing, whilst the most resource intensive in terms of tests, 
produces the largest benefit in terms of a reduction in required 
quarantine days, potentially reducing economic and social costs 
(Table 10).

There are a number of limitations with this model, as discussed 
in detail in the original article, for example: index cases seek 
out and take a test within 1 day after the onset of symptoms; 
only a single generation of infection is examined; and the use of a 
simplifying assumption that the Ct curve is a reasonable proxy for 
both the infectivity and probability of detection by testing4. 

In addition, we used assumptions of enhanced adherence following 
shorter periods of isolation or quarantine. In general, the testing 
strategy results in shorter quarantine or isolation periods with higher 
assumed rates of adherence reducing the number of infectious 
person-days in the community to a greater degree than that of 
longer quarantine or isolation periods which have lower assumed 
rates of adherence, and hence may overestimate the effectiveness 
of our testing strategies. In particular, for those whose test to release 
from isolation is positive, the model assumed the same adherence 
level would remain for the continuation of the isolation period, 
overestimating the adherence for those individuals. Furthermore, 
we have used linearly adjusted adherence values by day. These 
estimates as well as a functional form for adherence need to be 
verified by additional research.

The model has not quantified the cost associated with false 
positive results which, in the absence of a test to release from 
quarantine, or daily testing in the absence of quarantine, would have 
been incorrectly placed into isolation. In low prevalence settings 
there are likely to be a greater proportion of false positives. However, 
the number of false positives who are forced to undergo a period 
in isolation will never offset the total reduction in quarantine or 
isolation days as a result of Ag RDT testing strategies. Lastly, no 
estimate of the economic or social costs has been included in 
this analysis. Future research needs to quantify the reduction in 
economic and social costs from the reduction in quarantine/isolation 
days associated with daily testing and test to release strategies 
relative to the costs of increased Ag RDT testing.

Quarantine and isolation could be shortened by testing to exit, or 
replaced by daily contact testing, which may avert more infectious 
person-days in the community if testing induces individuals to 
adhere better than they do to a longer 14-day quarantine or 10-
day isolation periods. Reducing contact tracing delays and boosting 
adherence is key to reducing the number of infectious person-days 
in the community. Whether the costs of additional Ag RDT tests are 
offset by reduced economic costs due to reduced days spent in 
quarantine or isolation, remains to be investigated.

Table 10. Reduction in quarantine days per 10,000 cohort

 Days in quarantine Reduction in quarantine days per 10,000 cohort

Status quo 14 -

Test to release 10 40,000

7 70,000

5 90,000

3 110,000

Daily testing 0 140,000
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Figure 21. (A) Tests per Infectious Person-day averted: Test to Release Quarantine;  
 (B) Tests per Infectious Person-day Averted: Daily testing – no quarantine.
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Figure 20. (A) Number of Infectious Person-day averted: Test to Release Quarantine;  
 (B) Number of Infectious Person-day Averted: Daily testing – no quarantine.
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In an effort to compare uncertainty estimates (95% simulation 
intervals) across use cases, scenarios were selected that had similar 
parameters. The three consistent parameters were (1) prevalence of 
COVID-19 (2) effective reproductive number (Rt) and (3) frequency 
or timing of tests. Some models have additional testing strategies, 
which we also kept constant. Table 11 describes the use case 
scenarios used to compare the uncertainty estimates in the figure.

In Figure 22 we compare the point estimates across the two main 
outcomes (percent infections averted and test per averted infection) 
for community testing, K-12 schools, Universities, Mass gatherings, 
Border crossings, and Exiting quarantine use cases. Some use cases 
do not model certain epidemic parameters, and thus were excluded 
from the figure. Instead of the number of infections, the outcome 
for the Exiting quarantine use case was the number of infectious 
days. Figure 22A assesses the percent infections averted and the 
number test per averted infection when Rt = 1.2 or not applicable 
and prevalence is 1%, Figure 22B when Rt = 1.2 or not applicable 
and prevalence is 0.1%, Figure 22C when Rt = 0.8 and prevalence 
is 1%, and Figure 22D when Rt = 0.8 and prevalence 0.1%.

The outcomes for percent infections averted ranged from 
19% (universities; Rt=1.2, prevalence=1%) to 99% (community 
testing; Rt=0.8, prevalence=0.1%), and the simulation intervals 
varied slightly. The test per averted infection ranged from 18 
tests (universities; Rt=0.8, prevalence=0.1%) to 2557 tests (K-12 
schools; Rt=0.8, prevalence=0.1%), with a similar trend in the width 
of simulation intervals across use cases. Use cases that targeted a 
certain group of people (Mass gatherings, Border crossings, exiting 

Use case Prevalence Rt Test frequency
Additional testing strategy/ 

additional information

Community 
testing 1%, 0.1% 0.8, 1.2 Once a week

Tested 50% of the population with  
testing effectiveness of 50%

K-12 schools 1%, 0.1% 0.8, 1.2 Once a week Tested all teachers and students

Universities 1%, 0.1% 0.8, 1.2 Once a week N/A 

Mass 
gatherings 1% 1.2 Once

Event duration of 5 hours, and  
a test 2 days prior to the event. 

Border 
crossings 1% N/A Once Ag-RDT at the border only

Exiting 
quarantine

1% N/A
One test to release from quarantine 

and one test to release from isolation
Delay to contract tracing is 3 days,  

5 days in quarantine, and 5 days in isolation

Table 11. Description of the use case scenarios to compare uncertainty estimates.

quarantine) had greater uncertainty than use cases that focused 
on a larger subpopulation (community testing, K-12 schools, and 
universities).

The trend for impact (percent infections averted) and efficiency (test 
per averted infection) are similar for both prevalence = 1% (Figure 
22C) and prevalence 0.1% (Figure 22D) when Rt is 0.8, but test 
per averted infection is generally higher when prevalence is 0.1%. 
Ag RDT use in universities is more impactful (greater percentage of 
infections averted) when Rt is low, while use in K-12 schools when 
Rt is high.

Among total infections averted and total infections, the width of 
the simulation intervals were generally small, except for border 
crossings. The width of the border crossing interval may be due 
to the model structure of the LSHTM model, which used viral load 
trajectories to calculate the corresponding probability of infection. 
Overall, the simulation intervals were narrow across use cases and 
outcomes, demonstrating that the estimates did not vary greatly due 
to stochasticity.

OVERALL, HIGH COVID-19 PREVALENCE IN THE 
POPULATION MAKES AG RDT TESTING MORE 
EFFICIENT, WHERE THE TEST PER AVERTED 

INFECTION IS LOWER WHEN PREVALENCE IS 1%.

USE CASE UNCERTAINTY
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Figure 22. Point estimate and 95% simulation intervals for percent infections averted and test per averted infection when  
 (A) Rt = 1.2 or not applicable and prevalence is 1%,  
 (B) Rt = 1.2 or not applicable and prevalence is 0.1%,  
 (C) Rt = 0.8 and prevalence is 1%,  
 (D) Rt = 0.8 and prevalence 0.1%.
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It can then be determined how to allocate and optimize Ag-RDTs to 
reduce COVID-19 transmission and re-open societies safely: allowing 
schools and universities to re-open, sporting events, concerts and 
places of worship to open, reduce quarantine periods, halt outbreaks 
and resume travel. The different use case settings presented above 
require different testing strategies to most efficiently and effectively 
reduce infections across a range of epidemic conditions. 

In the community testing use case, across all the epidemic 
scenarios, a greater percentage of infections are averted with 
more frequent and more widespread community-wide Ag-RDT 
testing, given that positive cases comply with isolation (isolation 
effectiveness). Similarly, for the K-12 use case, an increased 
frequency of testing also resulted in a larger proportion of infections 
averted and, more widespread testing – testing all students plus all 
teachers – was the most effective scenario in reducing the number 
of new infections. An Ag-RDT strategy in a university setting was 
most effective and prevented the largest percentage of infections 
under any scenario when testing was conducted twice weekly.

Any Ag-RDT testing strategy to exit quarantine or isolation early 
was very effective at reducing the number of infectious days in 
the community relative to the status quo of no testing due to the 
estimated improvement in adherence to quarantine/isolation. High 

The effective reproductive number of SARS-CoV-2 (Rt) and the 
prevalence of COVID-19 within the community are two influential 
factors in the success of a testing strategy. Under widespread 
community testing, a high Rt and high prevalence necessitated 
a larger proportion of individuals be tested more frequently to 
maximize a reduction in transmission. On the other hand, K-12 
schools and universities had somewhat contrasting results. While 
both models agreed that a greater proportion of infections could be 
prevented under low COVID-19 prevalence, they present opposite 
results in the context of Rt. K-12 schools saw a greater reduction 
in cases under a high Rt, while universities saw a greater reduction 
in cases when the Rt was low. These differences could be reflective 
of both the transmission dynamics within networks among the use 
cases and the way Rt was represented in the model. For example, 

WE SYNTHESIZE SOME OF THE MAIN FINDINGS ACROSS USE CASES BELOW:

SYNTHESIS AND NEXT STEPS

THE AIM OF THE USE CASE ANALYSIS WAS TO IDENTIFY 
A RANGE OF SCENARIOS ACROSS THE VARIOUS 

SECTORS OF SOCIETY WHERE AG-RDT SCREENING FOR 
COVID-19 WOULD BE APPROPRIATE FOR USE.

frequency testing, or daily testing in the absence of quarantine for at 
least 5 days and a test to release strategy for isolation averted the 
most infectious person-days if testing induced individuals to adhere 
better than they would to a longer 14-day quarantine or 10-day 
isolation period.

In the case of mass gatherings, the timing, rather than the 
frequency of the test was most important. Using Ag-RDT tests 
to screen mass gathering attendees the day before or the day of an 
event offered the greatest reduction in infectious individuals at mass 
gatherings. While the testing strategy modeled at border crossings 
was slightly different from that of other use cases, an additional 
negative COVID-19 RT-PCR test result prior to Ag-RDT screening at 
the border offered a greater reduction in the number of undetected 
infections entering a country. 

the university model expressed Rt within the university community (a 
closed community) and was not reflective of the broader community, 
indicating that testing works best in concert with other interventions 
that bring the Rt below 1. For both use cases, it remains to be 
determined what effect their respective testing strategies will have 
on the broader community.

The effect of COVID-19 prevalence on Ag-RDT screening at 
border crossings is less apparent as it is largely restricted by the 
performance of the tests used. As COVID-19 prevalence increases, 
more infectious imports are both averted and enter undetected. 
So, while fewer cases of COVID-19 will enter a country when the 
prevalence is low, the impact these undetected infections have on 
the recipient community remains to be analyzed. 

ACROSS USE CASES, A HIGHER FREQUENCY OF TESTING (OR MORE WIDESPREAD TESTING)  
WAS ASSOCIATED WITH A GREATER IMPACT IN TERMS OF INFECTIONS AVERTED.

IN GENERAL, TESTING STRATEGIES ACROSS MOST USE CASES WERE  
MOST EFFECTIVE WHEN RT AND/OR PREVALENCE IS LOW.
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Across all scenarios in the quarantine and isolation use case, 
low exposed contact prevalence was associated with more tests 
required to avert an infectious person-day in the community. 
This is because an Ag-RDT testing strategy for low versus high 
prevalence ‘captures’ less infectious days in the community for the 
same number of tests. Similarly, with border crossings, the number of 
tests per infectious import averted required far more tests to capture 
one infection at low prevalence levels. At mass gatherings, more 
tests are required to detect one infectious person if prevalence is 
low. In both the community testing and K-12 schools use cases more 
tests are also required per infection averted when the prevalence is 
low. 

In the K-12 use case, the greater the frequency of testing, the 
greater the number of tests required to prevent one infection and 
subsequently the less efficient the strategy. Testing all teachers 
and all students ages 13-18 was the most efficient strategy in terms 
of the number of tests required to prevent a new infection across the 
majority of epidemic conditions and testing frequencies. In terms of 
the community testing use case, the lower the frequency of testing 
in the community consequently decreased the number of tests per 
infection averted in most scenarios. The trade-off between impact 
and efficiency was less stark in the University setting when the Rt 
was low, where bi-monthly testing of students, faculty, and staff 
required the least number of Ag-RDT tests to prevent one infection 
while preventing a comparable number of infections to weekly or 
twice weekly testing. However, as the Rt increases more frequent 
testing averts a larger percentage of infections while requiring more 
tests and reducing efficiency.

When testing to exit quarantine and/or isolation, test to release 
strategies were generally more efficient and utilized less Ag-RDT 
tests compared to an intensive daily testing strategy. However, this 
efficiency comes at the expense of a smaller reduction in the number 
of infectious days.   

Notably this was not the case in the University use case. In the 
university setting, when the Rt is low, testing once weekly or bi-
monthly would be sufficient at preventing a comparable number 
of infections (to higher frequency of testing). When the Rt and 
prevalence are high, twice weekly testing prevented the greatest 
number of infections, but with significantly more tests necessary per 
averted infection. This is largely because the marginal gain in number 
of cases prevented decreases as the Rt and prevalence increase, 
while the number of tests administered remains the same under the 
given frequency. These contrasting outcomes (in comparison to the 
other use cases) speak to the limitations of the university model as a 
closed community with a small population. 

Efficiency is perhaps most clear in the mass gatherings use 
case, which is largely dictated by the time of testing. Testing the 
day of the event detects the greatest number of infectious individuals 
while utilizing the same number of tests as compared to testing in 
the days prior to the event, as attendees are more likely to become 
infectious the longer the time between testing and the event. 

The efficiency of border crossing testing remains to be 
determined in the next phase of our analysis. 

The models for the different use cases utilize a number of simplifying 
assumptions in order to reduce complexity, which introduces several 
limitations in the interpretation of our findings. For example, the 
models are unconstrained by healthcare worker capacity or total 
number of tests. Furthermore, we have not validated models based 
on ongoing pilot projects, such as testing at mass gatherings or 
routine asymptomatic testing. Moreover, across use cases, we have 
modeled the most likely scenarios that would provide greater insight 
into interventions that would provide robust epidemic control and 
surveillance. As a tradeoff between complexity and parsimony of our 
models, we weren’t able to model all possible testing scenarios.

BUT, IN GENERAL, MOST USE CASE TESTING STRATEGIES REQUIRE MORE TESTS  
TO AVERT INFECTIONS WHEN RT AND/OR PREVALENCE ARE LOW.

IN GENERAL, LOWER FREQUENCY TESTING STRATEGIES ARE MORE EFFICIENT.
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NEXT STEPS

testing, contact tracing, and isolation of both true and false positive 
AgRDT individuals (and their contacts). 

In addition, we will conduct additional quantitative analyses 
related to the specificity of the AgRDT tests. We aim to estimate 
sensitivity of AgRDTs by day post-infection, and incorporate this into the 
model. We also intend to assess optimal allocation of a given number 
of tests, or potentially healthcare worker capacity, across use cases. 
Additional scenarios may also be modeled, such as implementation of 
self-testing and relying on individuals to self-isolate.

THE RESULTS PRESENTED FOR THE USE CASES IN THIS REPORT ONLY QUANTIFY  
THE EFFECTIVENESS OF TESTING STRATEGIES WITHIN EACH USE CASE.

THE NEXT PHASE OF THIS PROJECT WILL FOCUS ON USING AN AGENT BASED MODELLING  
FRAMEWORK TO INVESTIGATE THE RELATIVE POTENTIAL EFFECTIVENESS OF EACH OF THESE USE CASES  
IN DIFFERENT LMIC COUNTRY ARCHETYPES (DIFFERENT DEMOGRAPHIES, URBAN/RURAL GEOGRAPHIES, 

MIXING PATTERNS, AND LEVELS OF PUBLIC HEALTH RESOURCES).

THE FINAL PHASE OF THE PROJECT WILL FOCUS ON DIAGNOSTIC NETWORK OPTIMIZATION  
BASED ON THE AGENT-BASED MODELLING FRAMEWORK ABOVE AND SPECIFIC INFORMATION  

ABOUT DIAGNOSTIC RESOURCE ACCESSIBILITY AND LOCATIONS.

This will include explicit evaluation of when and in what 
settings different combinations of use cases are likely to be 
most efficient for monitoring levels of epidemic activity and 
reducing transmission. The results from this phase of the project 
will be used to draft recommendations for both the most efficient 
and most impactful use of Ag-RDT resources in different country 
archetypes. This phase will include a cost-effectiveness component, 
where we intend to incorporate costs, as well as explicitly modeling 
the expected impact of false positives as well as false negatives. 
Some costs that may be incorporated into the model include costs of 

The results presented here do not offer any information on 
the impact of each use case on the broader community or 
the effects these testing strategies could have on onward 
community transmission. Importantly, the results of each use 

case can not be directly compared with one another because of 
differences in the underlying modelling frameworks and the lack of 
explicit consideration of the proportion of any population that might 
be captured within any particular use case.

The primary goal of this phase of the project will be to determine 
optimal testing strategies that balance trade-offs between 
feasibility, costs, and infections. The secondary goal will be to 

evaluate the trade-off between impact and efficiency of different 
testing strategies.

Speed and frequency of testing to provide real-time SARS-CoV-2 case data outweigh the benefit of higher test sensitivity, making Ag-RDTs 
a valuable tool for case detection, outbreak investigation and contact tracing. These findings emphasize the value of widespread, high 
frequency Ag-RDT COVID-19 testing. However, health systems in limited resource settings may have difficulty scaling up testing to the 
levels evaluated in this report; thus, it is imperative to determine the optimal testing strategy that balances trade-offs between feasibility, 
costs, and infections. Additional cost-effectiveness studies that extend these findings need to be conducted to evaluate the trade-off 
between impact and efficiency. The results from these use cases provide an evidence base for the use of Ag-RDTs in various settings and 
provide an estimate of the impact of expanding access to Ag-RDTs.

CONCLUSION
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APPENDIX: FURTHER MODEL DESCRIPTIONS 
AND SECONDARY ANALYSES

ACT-A DX MODELLING CONSORTIUM PARAMETER AND ASSUMPTIONS TABLES

The below tables summarize the parameters and assumptions of the different models that informed 
the different use cases.

Model information Description

Model type Describe model structure (compartmental, agent-based, etc) Compartmental model

Age structure Age structure or distribution assumed in model None

Network structure Explicit or implicit network assumptions? No network assumptions

Spatial structure

Is a spatial structure assumed? Yes

If yes, what level of granularity? Province level

How is the spatial structure parameterized? Varying levels of proportion of cases

Is there a varying force of infection in each geographic area? Yes

What is the connectivity between use case and the population  
(i.e. fully integrated, semi-closed), and how is this parameterized? Use case is same as the community

MODEL PARAMETERIZATION

Parameter type Description Value/ 
description Range

Infectiousness/ 
duration

Time from point of infection to onset of symptoms (days) 2 1 to 3

Duration of infectiousness for asymptomatic cases 7 6 to 8

Duration of infectiousness for mild cases 5 4 to 6

Duration of infectiousness for severe cases 5 4 to 6

Duration of pre-symptomatic infectiousness 4 2 to 6

Relative infectiousness of asymptomatic & pre-symptomatic cases  
compared to symptomatic cases 0.75 0.70 to 0.80

Serial interval Time from onset of symptoms in primary case to onset of symptoms  
in secondary case   

1. COMMUNITY TESTING MODEL
Boston University: Karla Therese L Sy, Dr Brooke Nichols
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MODEL PARAMETERIZATION

Parameter type Description Value/description Range Notes

Severity

Proportion of cases that are asymptomatic 0.75 0.7-0.8

Different for  
each provinceProportion of cases that are mild 0.2375 0.23-0.24

Proportion of cases that are severe 0.0125 0.01-0.07

Treatment

Proportion of mild cases that seek treatment (outpatient) N/A   

Proportion of severe cases that seek treatment (hospitalised) 0.6 0.4-0.7  

Average days from symptom onset to treatment seeking for mild cases N/A   

Average days from symptom onset to hospitalisation for severe cases 5 4 to 6  

Intervention  
assumption

Are there any interventions in place in the community  
(i.e. lockdown, social distancing, masks, vaccinations)?

Isolation with COVID-19  
positive diagnosis   

How are you representing these interventions (reduction in Rt,  
reduced proportion of susceptible, reduction in network connectivity?)

Reduction in force of infection 
through reduction in effective 

number of contacts
  

Are there any interventions in place in the use case  
(i.e. lockdown, social distancing, masks, vaccinations)?

Use case is same  
as the community   

How are you representing these interventions (reduction in Rt,  
reduced proportion of susceptible, reduction in network connectivity?)

Use case is same  
as the community   

Contact rates R0 2.5   

Testing

Time from test to result (minutes/hours/days/ or assumed ‘immediate’) Immediate   

Proportion of people in the use case that get tested 1%, 5%, 20%, 50%, and 90%   

Frequency of testing 1x/week, 2x/week, and 1x/2 weeks   

Criteria for accessing a test (e.g. in widespread community  
testing, is it age targeted, or sympomatic only?) Widespread community testing   

Time to return to testing pool after testing positive Immunity assumed for the rest 
of the time period   

Use case  
specific 

parameter

Population size (community) 58775021   

Population size (use case) Same as above   

Percent of the total population in the use case 100%   

Additional measures in the use case, in addition to testing, assumed None   

Efficacy of measures in reducing Rt 20%, 50%, 80%   

Additional relevant/
key parameters  

not yet described
Sensitivity of AgRDT (both symptomatic and asymptomatic cases) 0.85 0.75-0.9  
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Model information Description Notes

Model type Describe model structure (compartmental, agent-based, etc.) Simulation Simulated outbreaks w/in school

MODEL PARAMETERIZATION

Parameter type Description Value/description Range

Infectiousness/ 
duration

Time from point of infection to onset of symptoms (days) 5 days  

Duration of infectiousness for asymptomatic cases   

Duration of pre-symptomatic infectiousness Days infectious 1-4 days, before symptoms  
are detected then isolation

Relative infectiousness of asymptomatic &  
pre-symptomatic cases compared to symptomatic cases Not specified  

Severity Proportion of cases that are asymptomatic 26 - 39%  

Intervention  
assumption

Are there any interventions in place in the use case  
(i.e. lockdown, social distancing, masks, vaccinations)?

Masks, 6-foot social distancing, 
ventilation, hand-hygiene,  

class cohorts/rotation,  
daily symptom screening

 

How are you representing these interventions (reduction in 
Rt, reduced proportion of susceptible, reduction in network 
connectivity?)

Reduced secondary  
attack rate (SAR)  

Contact rates

Average daily contacts 9 -13 (Student cohort size) for days in-person

Probability of infection given an infectious contact 18.10% Secondary attack rate

OR

Transmission rate (beta) f (t ) = (1/ Γ(k )Θk ) * t k−1e−t ⁄Θ
Distributed transmission from 

index case over 2 weeks, gamma 
distribution, k=2.25, Θ=2.80

Parameter type Description Value/description Range Notes

Testing

Time from test to result (minutes/hours/days/ or assumed 
‘immediate’) 1 day   

Proportion of people in the use case that get tested Monthly / Weekly 10, 20% / 10%, 
20%, 100% Randomly tested

Frequency of testing Monthly / Weekly   

Criteria for accessing a test (e.g. in widespread community 
testing, is it age targeted, or symptomatic only?)

Randomly allocated  
surveillance testing   

Time to return to testing pool after testing positive 2 weeks   

Use case specific 
parameter Population size (use case) 339 in-person (475 total)  Median Students  

per school 

2. K-12 SCHOOLS MODEL
New York University, Dr Anna Berhsteyn
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3.  UNIVERSITIES MODEL
Boston University, Dr Laura White and Dr Eric Kolaczyk
This model utilizes Covasim developed by the Institute for Disease Modeling (IDM), Dr Cliff Kerr.

Model information Description Notes

Model type Describe model structure  
(compartmental, agent-based, etc.) Agent-based  

Age structure Age structure or distribution  
assumed in model

Yes, continuous  
variable in the model

Age-specific contact matrices are used to generate individuals and 
their expected contacts. There is age-specific disease susceptibility, 
progression, and mortality probabilities.

Network structure

Explicit or implicit network 
assumptions?

Three different kinds of 
explicit networks: random 
network, SynthPop, and 

hybrid network

Random networks, SynthPops network - Census or survey data 
such as those from Demographic and Health Surveys are used to 
inform demographic characteristics (e.g., age, household size, school 
enrollment, and employment rates). Age-specific contact matrices 
are then used to generate individuals and their expected contacts. 
SynthPops generates household, school, and work contact networks; 
Hybrid network - each person in the population has contacts in 
their household, school, workplace, and community. A population 
of individuals is generated according to a location-specific age 
distribution, and each individual is randomly a signed to a household 
using location-specific data on household sizes.

How were the networks 
generated?

Census or survey data -  
DHS, school enrollment data, 

data on workplace sizes

Spatial structure

Is a spatial structure assumed? No

While typical simulations do not have their own internal spatial 
structure, we do often model larger spatial areas as the combination 
of smaller ones. For example, we’ve modeled individual districts within 
Uttar Pradesh.  We don’t typically consider mixing between regions, 
but simply because we haven’t yet had good enough data to inform 
it – the functionality for it is in the model.

Is there a varying force of 
infection in each geographic area?

No, but there is  
varying FOI for each 

contact type

When using the explicitly network structure, default transmission 
probabilities are roughly 0.050 per contact per day for households, 
0.010 for workplaces and schools, and 0.005 for the community. The 
weighted mean end up being close to the default β value of 0.016 for 
a well-mixed population.

What is the connectivity between 
use case and the population  
(i.e. fully integrated, semi-closed), 
and how is this parameterized?

Fully integrated

We draw random contacts for each individual from other individuals in 
the population, where n is drawn from a Poisson distribution with rate 
parameter λc equal to the expected number of contacts in the general 
community (with λc = 20 as a default).

MODEL PARAMETERIZATION

Parameter type Description Value/description Range Notes

Infectiousness/ 
duration

Time from point of infection to onset of symptoms (days) 1.1 days τsym ~ lognormal (1.1, 0.9)  

Duration of infectiousness for asymptomatic cases 8 days τra ~ lognormal (8.0, 2.0)  

Duration of infectiousness for mild cases 8 days τrm ~ lognormal (8.0, 2.0)
Time from symptom  

onset to recovery
Duration of infectiousness for severe cases 18.1 days τrs ~ lognormal (18.1, 6.3)

Duration of pre-symptomatic infectiousness 1 day τsym ~ lognormal (1.1, 0.9)  

Relative infectiousness of asymptomatic  
& pre-symptomatic cases compared  
to symptomatic cases

1

Default assumption that 
transmissibility is the 
same whether or not an 
individual has symptoms. 
There is a parameter that 
can be modified as needed 
depending on the modeling 
application or context.

34



MODEL PARAMETERIZATION

Parameter type Description Value/description Range Notes

Serial interval Time from onset of symptoms in primary case 
to onset of symptoms in secondary case N/A   

Severity

Proportion of cases that are asymptomatic Dependent on age  
(Table 2)

Proportion of cases that are mild Dependent on age  
(Table 2)   

Proportion of cases that are severe Dependent on age  
(Table 2)   

Treatment

Proportion of mild cases that seek treatment 
(outpatient) 0   

Proportion of severe cases that seek 
treatment (hospitalized)

Dependent on age  
(Table 2)   

Average days from symptom onset to 
hospitalization for severe cases 6.6 days

τsev ~ 
lognormal 
(6.6, 4.9)

 

Intervention  
assumption

Are there any interventions in place in the 
community (i.e. lockdown, social distancing, 
masks, vaccinations)?

We can specify   

How are you representing these interventions 
(reduction in Rt, reduced proportion 
of susceptible, reduction in network 
connectivity?)

Reduction in beta, or 
reduction in network 

connectivity
  

Are there any interventions in place in the use 
case (i.e. lockdown, social distancing, masks, 
vaccinations)?

We can specify   

How are you representing these interventions 
(reduction in Rt, reduced proportion 
of susceptible, reduction in network 
connectivity?)

Reduction in beta, or 
reduction in network 

connectivity
  

Contact rates

Average daily contacts   

It can be specified as with contacts based on 
data for households, schools, and workplaces; an 
assumption of 20 daily community contacts; an 
average transmission rate of 0.016 per contact 
per day, with weights of 3.0: 0.6 : 0.6 : 0.3 for 
households, schools, workplaces, communities 
respectively. So the risk of transmission per 
household contact per day = 0.016*3.0 ≈ 
5%, although usually this is calibrated to 
epidemiological data.

Transmission rate (beta) 0.16

When using the explicit network structure, 
default transmission probabilities are roughly 
0.050 per contact per day for households, 
0.010 for workplaces and schools, and 0.005 
for the community. The weighted mean end up 
being close to the default β value of 0.016 for 
a well-mixed population. This value is typically 
calibrated by the user to best match local 
epidemic data.
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MODEL PARAMETERIZATION

Parameter type Description Value/description Notes

Testing

Time from test to result (minutes/hours/ 
days/ or assumed ‘immediate’) We can specify  

Proportion of people in the use case  
that get tested We can specify

Frequency of testing We can specify  

Criteria for accessing a test (e.g. in 
widespread community testing, is it  
age targeted, or symptomatic only?)

We can specify

We can specify the probabilities that that people with different 
risk factors and levels of symptoms will receive a test on each 
day. Separate daily testing probabilities can be entered for t 
hose with/without symptoms, and those in/out of quarantine.

Time to return to testing pool after  
testing positive

None, after testing 
positive they  

go on to recover
 

Use case specific 
parameter

Population size (community) We can specify  

Population size (use case) We can specify  

Percent of the total population in the use case We can specify  

Additional measures in the use case,  
in addition to testing, assumed

Physical distancing, 
masks, hygiene, 
contact tracing

Contact tracing is parameterized by the probability that a 
contact can be traced, and by the time taken to identify and 
notify contacts.

Efficacy of measures in reducing Rt We can specify  

Additional relevant/
key parameters not 

yet described

Probability that someone doesn’t get their 
test results We can specify  
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4. MASS GATHERINGS MODEL
Harvard T.H. Chan School of Public Health. Dr Stephen Kissler and Dr Yonatan Grad

Model information Description Notes

Model type Describe model structure (compartmental, agent-based, etc) Simulation Bayesian statistical model

MODEL PARAMETERIZATION

Parameter type Description Value/description Notes

Intervention  
assumption

Are there any interventions in place in the community  
(i.e. lockdown, social distancing, masks, vaccinations)? No  

Are there any interventions in place in the use case  
(i.e. lockdown, social distancing, masks, vaccinations)? No  

Testing

Time from test to result (minutes/hours/days/ or assumed 
‘immediate’) Not specified Can examine test w/ result  

0 to 3 days prior to event

Proportion of people in the use case that get tested 100%  

Frequency of testing Once before event  

Criteria for accessing a test (e.g. in widespread community 
testing, is it age targeted, or symptomatic only?) All event participants  

Use case specific 
parameter

Population size (use case) 1000 individuals  

Additional measures in the use case, in addition to testing, 
assumed Prevalence Prevalence set to 2% in analysis

ADDITIONAL RELEVANT/KEY PARAMETERS NOT YET DESCRIBED In analysis

 
 

Asymptomatic individuals shed for 9.7 days These parameters are variable in 
modeling tool

 
 

Symptomatic individuals shed for 13.4 days These parameters are variable in 
modeling tool  

Test limit of detection (Ct) Can be specified 40 Ct for RT-qPCR, 35 Ct for Ag-RDT

Sampling sensitivity Can be specified 1% for RT-qPCR, 5% for Ag-RDT

Infectiousness threshold (Ct)

Can be specified. Time infectious 
dependent on proliferation 

time, clearance time & peak 
Ct –determines amount of time 

below 30Ct

Ct <= 30. 

Event duration Can be specified N/A

Proliferation time mean and 95%CI/SD (days) 2.7 days (1.2, 3.8)  

Clearance time mean and 95%CI/SD (days) 7.4 days (3.9, 9.6)  

Peak Ct and 95%CI/SD 22.4 (20.6, 24.1)  
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5. BORDER CROSSING MODELS
5.1 A*STAR MODEL
Agency for Science, Technology and Research: Dr Yin Xiao Feng, Dr Yiqi Seow

Model information Description Notes

Model type Describe model structure (compartmental, agent-based, etc) Agent-based A*STAR model

MODEL PARAMETERIZATION

Parameter type Description Value/description Range Notes

Infectiousness/ 
duration

Time from point of infection to onset of symptoms 
(days) 3-14 days 3 - 14 (median  

4.5 days) same across all types of cases

Duration of infectiousness for asymptomatic cases  11-12 days relative infectiousness  
to be configured

Duration of infectiousness for mild cases Not differentiated   

Duration of infectiousness for severe cases Not differentiated   

Duration of pre-symptomatic infectiousness  4 days before 
symptom onset  

Relative infectiousness of asymptomatic & pre-
symptomatic cases compared to symptomatic cases 0.5 0 to 1 

(configurable)  

Severity Proportion of cases that are asymptomatic 0.5   

Intervention  
assumption

Are there any interventions in place in the  
community (i.e. lockdown, social distancing,  
masks, vaccinations)?

to some extent   

How are you representing these interventions 
(reduction in Rt, reduced proportion of susceptible, 
reduction in network connectivity?)

Reduction in Rt   

How are you representing these interventions 
(reduction in Rt, reduced proportion of susceptible, 
reduction in network connectivity?)

Reduction in Rt   

Contact rates R0 Varied (0.5-6)  

Rt is determined by comfort  
of policy makers. We don’t make  
pre-assumption on Rt. We just adjust 
it to suit the expected understanding

Testing

Time from test to result (minutes/hours/days/  
or assumed ‘immediate’)

Variable depending  
on user request 1 to 12 hours  

Proportion of people in the use case that get tested Depends on use case   

Frequency of testing Determined  
by user request

every 24 hours 
and above  

Criteria for accessing a test  
(e.g. in widespread community testing,  
is it age targeted, or symptomatic only?)

Government-mandated 
testing at the border   

Time to return to testing pool after testing positive Not included  
in the model   
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MODEL PARAMETERIZATION

Parameter type Description Value/description Range

Use case specific 
parameter

Population size (community) Only modeled infected cases incidence of 100 new infections / day in  
source country in traveling population

Population size (use case) Only modeled infected cases incidence of 100 new infections / day in  
source country in traveling population

Additional measures in the use case,  
in addition to testing, assumed Not included in the model  

Efficacy of measures in reducing Rt Not included in the model  

Additional relevant/key parameters not yet described Contact tracing in reducing ‘leaked’ transmission  

5.2 BOSTON UNIVERSITY MODEL
Boston University. Joshua Chevalier, Dr Brooke Nichols

Model information Description Range

Model type Describe model structure (compartmental, agent-based, etc) Algebraic Algorithm  

MODEL PARAMETERIZATION

Parameter type Description Value/description Range

Intervention  
assumption

Are there any interventions in place in the community  
(i.e. lockdown, social distancing, masks, vaccinations)?

Lockdowns, social 
distancing, mask-use  

How are you representing these interventions (reduction in Rt,  
reduced proportion of susceptible, reduction in network connectivity?) Reduction in Rt  

Contact rates R0 Rt = 0.73 – 1.45  

Testing

Time from test to result (minutes/hours/days/ or assumed 
‘immediate’) Immediate  

Proportion of people in the use case that get tested 0% – 100%  

Frequency of testing Once at border  

Criteria for accessing a test (e.g. in widespread community  
testing, is it age targeted, or symptomatic only?) Randomly allocated to border crossers 

Use case specific 
parameter

Population size (community) Country Dependent  

Population size (use case) Country Dependent Represented as imports/100,000 population

Percent of the total population in the use case Country Dependent  

Additional measures in the use case, in addition to testing, assumed Variable daily border crossings 

ADDITIONAL RELEVANT/KEY PARAMETERS NOT YET DESCRIBED

 

Prevalence 0.2 – 2%  

Test Sensitivity 80% 50 – 90%

Proportions of land or air travelers 0% – 100% 25% increments
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5.3 LSHTM MODEL
London School of Hygiene and Tropical Medicine, Dr Billy Quilty and Dr Sam Clifford.

Model information Description Notes

Model type Describe model structure (compartmental, agent-based, etc) Stochastic, Agent-based
Individual-based simulation of 
varying viral load trajectories.  

Not a transmission model

Spatial structure

Is a spatial structure assumed? Country-level  

If yes, what level of granularity? Country-level  

What is the connectivity between use case and  
the population (i.e. fully integrated, semi-closed),  
and how is this parameterized?

No connection between use case and 
population. Modelled reduction in 

infectiousness of air-travelers

Do not differentiate between 
household v non-household 

transmission

MODEL PARAMETERIZATION

Parameter type Description Value/description Range Notes

Infectiousness/ 
duration

Time from point of infection to onset of symptoms 
(days) 5.1 days (95%: 2.3, 

11.5 days)
Ct peak. Kissler et al. 2020.  

McAloon et al. 2020

Duration of infectiousness for symptomatic cases 17 days SD 0.94 
days

Individual infectivity conditional upon 
culture probability given viral load. 

Pickering et al. 2021. Days after exposure

Duration of pre-symptomatic infectiousness  Variable  
Individual infectivity conditional upon 

culture probability given viral load. 
Pickering et al. 2021. 

Relative infectiousness of asymptomatic & pre-
symptomatic cases compared to symptomatic cases 60%  Asymptomatic persons shed virus for 60% 

of the duration of symptomatic persons.

Severity Proportion of cases that are asymptomatic 31% 24-38% Buitrago-Garcia et al. 2020

Intervention  
assumption

Are there any interventions in place in the  
use case (i.e. lockdown, social distancing,  
masks, vaccinations)?

(1) Pre-flight testing: no testing, PCR test, Lateral flow test (LFT) test. (2) Quarantine 
and/or testing on arrival. Post-flight quarantine 0(baseline),3,4,7,10,14 days. On 
final day of quarantine, either no test, LFT test, PCR test. A positive test at the end 
of quarantine leads to an additional 10 days of self-isolation. For those with no 
quarantine, travelers take LFT tests daily for 3,5,7, or 10 days.

How are you representing these interventions 
(reduction in Rt, reduced proportion of susceptible, 
reduction in network connectivity?)

Reduction in R of infectious arrivals. A reduction in risk represented by number of 
imported cases per day as a percentage of domestic incidence in the destination 
country

Testing

Time from test to result (minutes/hours/days/  
or assumed ‘immediate’) Assumed immediate   

Proportion of people in the use case that get tested 0-100%   

Frequency of testing Zero-Multiple, depending on scenario. Pre-arrival test (LFT/PCR); post-arrival tests: 
once on quarantine exit (PCR/LFT), or daily for 3,5,7,10 days (LFT)

Criteria for accessing a test  
(e.g. in widespread community testing,  
is it age targeted, or symptomatic only?)

Air-travel and 
quarantine   
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MODEL PARAMETERIZATION

Parameter type Description Value/description Range Notes

Use case specific 
parameter

Population size (community) Country-dependent   

Population size (use case) Volume of air-travel who are infected. 
Varies by country  

Percent of the total population in the use case Varies by country   

Additional measures in the use case,  
in addition to testing, assumed

Quarantine upon arrival (0-14 days), 
self-isolation (0-10days).  Not assumed, explicitly modelled

Efficacy of measures in reducing Rt Varies depending on 
scenario   

 ADDITIONAL RELEVANT/KEY PARAMETERS NOT YET DESCRIBED

 
 

Volume of air travelers Number of flights per route; assumed 
142 travelers per flight OpenSky flight database

Incidence/prevalence of COVID-19 amongst 
travelers from origin country

Applying an estimate of under-ascertainment of cases based on reported deaths 
and infection fatality ratio

Test sensitivity Assumed immediate   

Proportion of people in the use case that get tested 0-100%   

Frequency of testing

Test sensitivity is conditional on intra-host viral load dynamics. Use results of Innova 
test (Pickering et al) and estimate the mean probability of detection for a give Ct 
value for LFT. PCR tests are assumed to be 100% sensitive for Ct values < 35, and 
0% for Ct > 35.

Proportion of individuals adhering to quarantine in 
the absence of symptoms 28%  Individuals are either fully adherent  

or non-adherent. Steens et al. 2020

Proportion of individuals adhering to symptomatic 
self-isolation 71%  Steens et al. 2020

Proportion of individuals adhering to self-isolation 
following a positive test 86%  ONS  2021
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6. QUARANTINE AND CONTACT TRACING MODEL
London School of Hygiene and Tropical Medicine, Dr Billy Quilty and Dr Sam Clifford.

Model information Description Notes

Model type Describe model structure  
(compartmental, agent-based, etc) Stochastic, Agent-based

Individual-based simulation  
of varying viral load trajectories.  

Not a transmission model

 Spatial structure
What is the connectivity between use case and  
the population (i.e. fully integrated, semi-closed),  
and how is this parameterized?

No connection between use case and 
population. Modelled reduction in the 

infectiousness period of exposed contacts

Do not differentiate between 
household v non-household 

transmission

MODEL PARAMETERIZATION

Parameter type Description Value/description Range Notes

Infectiousness/ 
duration

Time from point of infection to onset of symptoms 
(days) 5.1 days (95%: 2.3, 

11.5 days)
Ct peak. Kissler et al. 2020.  

McAloon et al. 2020

Duration of infectiousness for symptomatic cases 17 days SD 0.94 
days

Individual infectivity conditional upon 
culture probability given viral load. 

Pickering et al. 2021. Days after exposure

Duration of pre-symptomatic infectiousness  Variable  
Individual infectivity conditional upon 

culture probability given viral load. 
Pickering et al. 2021. 

Relative infectiousness of asymptomatic & pre-
symptomatic cases compared to symptomatic cases 60%  Asymptomatic persons shed virus for 60% 

of the duration of symptomatic persons.

Severity Proportion of cases that are asymptomatic 31% 24-38% Buitrago-Garcia et al. 2020

Intervention  
assumption

Are there any interventions in place in  
the use case (i.e. lockdown, social distancing, 
masks, vaccinations)?

(1) Test to release from quarantine: investigate quarantine durations of 0,3,5,7,10,14 
days post exposure to an index case with either no testing, or testing with PCR or 
Lateral flow test (LFT) test on the last day of quarantine; (2) Daily testing in lieu 
of quarantine: Take a LFA every day for 1,3,5,7,10 or 14 days. (3) Self-isolation: 
Secondary cases displaying symptoms at any point post-exposure, or testing positive 
at any time, will isolate until 10 days have passed since onset of symptoms.

How are you representing these interventions 
(reduction in Rt, reduced proportion of susceptible, 
reduction in network connectivity?)

Effectiveness determined by the proportion of infectious distribution  
(from culture) spent in quarantine or isolation (following a positive test  
or symptoms), i.e transmission potential averted.

Testing

Time from test to result (minutes/hours/days/ or 
assumed ‘immediate’) Assumed immediate   

Proportion of people in the use case that get tested 100%   

Frequency of testing Scenario dependent   

Criteria for accessing a test (e.g. in widespread 
community testing, is it age targeted, or 
symptomatic only?)

Scenario dependent. 
Upon symptom 

onset, or exit from 
quarantine, or daily in 

lieu of quarantine
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MODEL PARAMETERIZATION

Parameter type Description Value/description Range Notes

Use case specific 
parameter

Population size (use case) Simulated 1000 index cases  
with 10 secondary cases.

 Model infected persons only, do not take 
in to account false positives. This was 

adjusted in the use case.

Additional measures in the use case, in addition to 
testing, assumed

Quarantine (0-14 days),  
self-isolation (10days).  Not assumed, explicitly modelled

Efficacy of measures in reducing Rt Varies depending on 
scenario   

ADDITIONAL RELEVANT/KEY PARAMETERS NOT YET DESCRIBED

 
 

Test sensitivity

Test sensitivity is conditional on intra-host viral load dynamics. Use results of Innova 
test (Pickering et al) and estimate the mean probability of detection for a give Ct 
value for LFT. PCR tests are assumed to be 100% sensitive for Ct values < 35, and 
0% for Ct > 35.

Contact tracing delays

Delay of 3 days 
from sample being 
taken to contacts 

being instructed to 
quarantine

0, 1.5 and 
3 days  

Proportion of individuals adhering to quarantine in 
the absence of symptoms 50% 0%, 100% 

Individuals are either fully adherent or 
non-adherent. Sampled from a Bernoulli 

distribution with the probability given by the 
proportion adhering

Proportion of individuals adhering to symptomatic 
self-isolation or isolation following a positive test 67%  0%, 100% 

Individuals are either fully adherent or 
non-adherent. Sampled from a Bernoulli 

distribution with the probability given by the 
proportion adhering
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Appendix Figure 2. Number of tests required per infection averted compared to the same epidemic scenario  
 without testing in schools; varied by targeted testing population, COVID prevalence,  
 effective reproductive number and frequency of testing.
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Appendix Figure 1. Percent of infections (amongst all teachers and pupils) averted compared to the same  
 epidemic scenario without testing in schools; varied by targeted testing population,  
 COVID prevalence, effective reproductive number and frequency of testing.
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Appendix Figure 3. Total number of infections amongst pupils and teachers, varied by targeted testing population,  
 COVID prevalence, effective reproductive number and frequency of testing.
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Appendix Figure 4. Total number of infections averted amongst pupils and teachers compared to no testing,  
 varied by targeted testing population, COVID prevalence, effective reproductive number  
 and frequency of testing.
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GLOSSARY OF TERMS

Ag-RDT Antigen Detecting Rapid Diagnostic Test

Ct (value) Cycle threshold, in PCR, number of cycles required for the fluorescent signal to cross the threshold.

LFT Lateral Flow Test, typically given to people who do not have symptoms of COVID-19 which give quick results.

LMIC
Low- and middle-income countries defined by the World Bank Group; low-income economies  
($1,005 or less GNI per capita) or as lower-middle-income economies ($1,006 to $3,955 GNI per capita).

NCEM National COVID-19 Epi Model, a compartmental model of the COVID-19 transmission dynamics of South Africa.

NPV
Negative Predictive Value, the probability a person will not have a disease given they test negative.
[Pr (Disease -| Test - ] = true negative tests / total negative tests

PPV
Positive Predictive Value, the probability a person will have a disease given they test positive.
[Pr (Disease +| Test + ] = true positive tests / total positive tests

RT-PCR Reverse Transcriptase Polymerase Chain Reaction, the gold standard for COVID-19 testing.

TAT Turnaround time, the amount of time taken to complete a process or fulfill a request.

Agent-based Model
An agent-based model (ABM) is a computational model for simulating the actions and interactions of autonomous 
agents (both individual or collective entities such as organizations or groups) in order to understand the behavior of 
a system and what governs its outcomes.

Bayesian Statistical 
Model

An approach to statistical modeling that treats all entities (variables, model parameters, missing data, and more) as 
random variables characterized by distributions.

Compartmental 
Model

The simplest models in the mathematical study of infectious disease dynamics. The population is divided into 
categories (compartments) of infectious disease (e.g. susceptible, infected, recovered) and their movement through 
various compartments of the model.

Simulation An imitation of a process or scenario.

Effective 
reproductive number

(Rt) The expected number of subsequent infections directly generated by one case in a population where some 
individuals are susceptible to infection, and others are not. The effective reproductive number depends on whether 
individuals have previously been infected or immunized. 
Rt = R0 * x

Incubation period
The time between infection and the onset of clinical symptoms. Incubation period can depend upon infectious dose, 
replication of the pathogen, susceptibility, and host characteristics.

Isolation 
Effectiveness 

Adherence to isolation following a positive diagnosis of COVID-19 and the subsequent reduction in the number of 
exposed contacts. 

Stochastic Being defined by a random probability distribution.

Triaging Assigning degrees of importance or urgency to patients from amongst a large number that require attention.

ACRONYMS

MODELS

OTHER TERMS
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